Product Data Sheet

QX-314 chloride

Cat. No.: HY-108505 CAS No.: 5369-03-9 Molecular Formula: $C_{16}H_{27}CIN_{2}O$ Molecular Weight: 298.85

Sodium Channel Target:

Pathway: Membrane Transporter/Ion Channel

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 50 mg/mL (167.31 mM; Need ultrasonic) DMSO: 14.29 mg/mL (47.82 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.3462 mL	16.7308 mL	33.4616 mL
	5 mM	0.6692 mL	3.3462 mL	6.6923 mL
	10 mM	0.3346 mL	1.6731 mL	3.3462 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS
 - Solubility: 100 mg/mL (334.62 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 1.14 mg/mL (3.81 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 - Solubility: ≥ 0.83 mg/mL (2.78 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.83 mg/mL (2.78 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	QX-314 chloride is a membrane-impermeable permanently charged sodium channel blocker $^{[1]}$.	
IC ₅₀ & Target	$sodiumchannel^{[1]}$	
In Vitro	QX-314 chloride exerts biphasic effects on transient receptor potential vanilloid subtype 1 channels (TRPV1) in vitro $^{[2]}$.	

?QX-314 chloride (1–60 mM) directly activates TRPV1 in a concentration-dependent manner $^{[2]}$. ?QX-314 chloride (10 mM) inhibits calcium currents in hippocampal CA1 pyramidal neurons intracellular, and the low-threshold (T-type) Ca $^{2+}$ currents are on average < 45% of control amplitude $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Rivera-Acevedo RE, et al. The quaternary lidocaine derivative, QX-314, exerts biphasic effects on transient receptor potential vanilloid subtype 1 channels in vitro. Anesthesiology. 2011 Jun;114(6):1425-34.

[2]. Talbot MJ, et al. Intracellular QX-314 inhibits calcium currents in hippocampal CA1 pyramidal neurons. J Neurophysiol. 1996 Sep;76(3):2120-4.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com