Proteins

Pseudothymidine

Cat. No.: HY-101969 CAS No.: 65358-15-8 Molecular Formula: $C_{10}H_{14}N_{2}O_{5}$ Molecular Weight: 242.23

Target: Nucleoside Antimetabolite/Analog; HIV Pathway: Cell Cycle/DNA Damage; Anti-infection

Powder Storage:

-20°C 3 years 4°C 2 years

In solvent -80°C 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 61.17 mg/mL (252.53 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.1283 mL	20.6415 mL	41.2831 mL
	5 mM	0.8257 mL	4.1283 mL	8.2566 mL
	10 mM	0.4128 mL	2.0642 mL	4.1283 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description Pseudothymidine is a C-nucleoside analog of thymidine.

Pseudothymidine is a C-nucleoside analog of thymidine [1]. The calculated $\Delta\Delta G^{\circ}_{50}$ /mod is -0.5 kcal/mol, with a ΔT_{m} /mod of In Vitro $0.82^{\circ}\text{C. For the duplexes containing nine dA-T/ψT pairs, the ΔT_{m}/mod is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+1.1$ kcal/mol. The duplexes containing nine dA-T/ψT pairs, the ΔT_{m}/mod is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+1.1$ kcal/mol. The duplexes containing nine dA-T/ψT pairs, the ΔT_{m}/mod is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+1.1$ kcal/mol. The duplexes containing nine dA-T/ψT pairs, the ΔT_{m}/mod is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+1.1$ kcal/mol. The duplexes containing nine dA-T/ψT pairs, the ΔT_{m}/mod is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+1.1$ kcal/mol. The duplexes containing nine dA-T/ψT pairs, the ΔT_{m}/mod is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+1.1$ kcal/mol. The duplexes containing nine dA-T/ψT pairs, the ΔT_{m}/mod is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+1.1$ kcal/mol. The duplexes containing nine dA-T/ψT pairs, the ΔT_{m}/mod is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+1.1$ kcal/mol. The duplexes containing nine dA-T/ψT pairs is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+1.1$ kcal/mol. The duplexes containing nine dA-T/ψT pairs is -0.9°C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+0.9^{\circ}$C and a $\Delta\Delta G^{\circ}_{50}$/mod is $+0.9^{\circ}$C$

> $modification \ of the \ duplex \ containing \ 12 \ consecutive \ dA-T/\psi T \ base \ pairs \ produces \ a \ \Delta T_m/mod \ of -0.9^{\circ}C \ and \ a \ \Delta \Delta G^{\circ}_{50}/mod$ of $+1.2 \text{ kcal/mol}^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay

Thermal DNA duplex denaturation studies are performed with templates containing up to twelve consecutive dA residues that are paired with its complement template containing consecutive T or Pseudothymidine (ψ T) residues. Experiments are performed in a buffer (45 mM NaCl, 45 mM sodium citrate, pH 8.1, final vol. 1.5 mL) containing template and its complement $(1.5~\mu\text{M of each}).~Absorbance~(260~nm)~is~monitored~over~a~range~of~25.0~to~90.0^{\circ}\text{C}~with~a~change~in~temperature~of~0.5^{\circ}\text{C}/min~for~five~heating~cycles}.~The~initial~heating~cycle~is~discarded~and~the~T_{m}~is~determined~by~averaging~the~temperatures~of~the~remaining~four~cycles.~The~ΔT_{m}~between~similar~duplexes~is~calculated~by~subtracting~the~T_{m}~of~the~duplex~containing~standard~bases~from~the~T_{m}~of~the~duplex~containing~C-glycosides~(including~Pseudothymidine)^{[2]}.$

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. S Lutz, et al. An in vitro screening technique for DNA polymerases that can incorporate modified nucleotides. Pseudo-thymidine as a substrate for thermostable polymerases. Nucleic Acids Res. 1999 Jul 1; 27(13): 2792-2798.

[2]. Havemann SA, et al. Incorporation of multiple sequential pseudothymidines by DNA polymerases and their impact on DNA duplex structure. Nucleosides Nucleotides Nucleic Acids. 2008 Mar;27(3):261-78.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com