Product Data Sheet

Propargyl-PEG1-acid

Cat. No.: HY-130504 CAS No.: 55683-37-9 Molecular Formula: $C_6H_8O_3$ Molecular Weight: 128.13

Target: PROTAC Linkers

Pathway: PROTAC

Storage: Pure form -20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (390.23 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	7.8046 mL	39.0229 mL	78.0457 mL
	5 mM	1.5609 mL	7.8046 mL	15.6091 mL
	10 mM	0.7805 mL	3.9023 mL	7.8046 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY


Description	Propargyl-PEG1-acid is a PEG-based PROTAC linker can be used in the synthesis of BTK-CRBN PROTACs Ibrutinib(HY-10997)-based PROTAC 4 and PROTAC 5. PROTAC 5 causes the degradation of BTK and induces the degradation of CSK, LYN, and LAT2 at $10~\mu\text{M}^{[1]}$. Propargyl-PEG1-acid is a click chemistry reagent, it contains an Alkyne group and can undergo coppercatalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

IC₅₀ & Target PEGs

In Vitro BTK-CRBN PROTACs act as stoichiometric degraders, resulting in degradation of BTK protein. Degradation of BTK is a result of cereblon E3 ligases family recruitment^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

Page 2 of 2 www.MedChemExpress.com