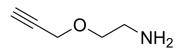
Proteins

Screening Libraries

Propargyl-PEG1-NH2


Cat. No.: HY-116069 CAS No.: 122116-12-5 Molecular Formula: C₅H₉NO Molecular Weight: 99.13

Target: **PROTAC Linkers**

Pathway: PROTAC

Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (1008.78 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	10.0878 mL	50.4388 mL	100.8776 mL
	5 mM	2.0176 mL	10.0878 mL	20.1755 mL
	10 mM	1.0088 mL	5.0439 mL	10.0878 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Propargyl-PEG1-NH2 is a PEG-based PROTAC linker can be used in the synthesis of PROTACs ^[1] . Propargyl-PEG1-NH2 is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
IC ₅₀ & Target	PEGs
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com