Product Data Sheet

Pralatrexate

Cat. No.: HY-10446 CAS No.: 146464-95-1 Molecular Formula: $C_{23}H_{23}N_{7}O_{5}$ Molecular Weight: 477.47

Target: Antifolate; Apoptosis

Pathway: Cell Cycle/DNA Damage; Apoptosis

Storage: Powder -20°C 3 years

2 years

In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 50 mg/mL (104.72 mM)

* "≥" means soluble, but saturation unknown.

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.0944 mL	10.4719 mL	20.9437 mL
	5 mM	0.4189 mL	2.0944 mL	4.1887 mL
	10 mM	0.2094 mL	1.0472 mL	2.0944 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.24 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.24 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Pralatrexate is an antifolate and is a potent dihydrofolate reductasean (DHFR) inhibitor with a K_i of 13.4 pM. Pralatrexate is a substrate for folylpolyglutamate synthetase with improved cellular uptake and retention. Pralatrexate has antitumor activities and has the potential for relapsed/refractory T-cell lymphoma treatment [1][2][3][4]. Pralatrexate is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
IC ₅₀ & Target	Ki: 13.4 pM (Dihydrofolate reductasean (DHFR)) ^[4]
In Vitro	Pralatrexate (100 pM-200 μM; 48-72 hours; T-lymphoma cell lines) treatment exhibits concentration- and time-dependent

cytotoxicity against a broad panel of T-lymphoma cell lines. The IC $_{50}$ values at 48 and 72 hours, respectively, are as follows: H9 cells, 1.1 nM and 2.5 nM; P12 cells, 1.7 nM and 2.4 nM; CEM cells, 3.2 nM and 4.2 nM; PF-382 cells, 5.5 nM and 2.7 nM; KOPT-K1 cells, 1 nM and 1.7 nM; DND-41 cells, 97.4 nM and 1.2 nM; and HPB-ALL cells, 247.8 nM and 0.77 nM. HH cells are relatively resistant after 48 hours of exposure, with the IC $_{50}$ at 72 hours being 2.8 nM $^{[1]}$.

Pralatrexate (2-5.5 nM; 48-72 hours; H9, HH, P12 and PF382 cells) treatment induces potent apoptosis, and caspase-8 and caspase-9 activation^[1].

Pralatrexate (3 nM; 16-48 hours; H9 and P12 cells) treatment clearly increases p27 levels and increases the accumulation of educed folate carrier type 1 (RFC-1) in cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cytotoxicity $Assay^{[1]}$

Cell Line:	T-lymphoma cell lines	
Concentration:	100 pM-200 μM	
Incubation Time:	48 hours, 72 hours	
Result:	Exhibited concentration- and time-dependent cytotoxicity against a broad panel of T-lymphoma cell lines.	
Apoptosis Analysis ^[1]		

Cell Line:	H9, HH, P12 and PF382 cells	
Concentration:	2 nM, 3 nM, 4 nM, 5.5 nM	
Incubation Time:	48 hours, 72 hours	
Result:	Induced potent apoptosis and caspase activation.	

Western Blot Analysis $^{[1]}$

Cell Line:	H9 and P12 cells	
Concentration:	3 nM	
Incubation Time:	16 hours, 24 hours, 48 hours	
Result:	Clearly increased p27 levels and increased the accumulation of RFC-1 in cells.	

In Vivo

The addition of Pralatrexate (15 mg/kg; intraperitoneal injection; on days 1, 4, 8, and 11; SCID-beige mice) to Bortezomib (0.5 mg/kg) enhanced efficacy compared with either drug alone $^{[1]}$.

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Animal Model:	SCID-beige mice (5-7-week-old) injected with HH ${\sf cells}^{[1]}$
Dosage:	15 mg/kg
Administration:	Intraperitoneal injection; on days 1, 4, 8, and 11
Result:	Showed superior efficacy in T-cell malignancies.

CUSTOMER VALIDATION

- Antiviral Res. 2023 Dec 23, 105787.
- Cancers (Basel). 2022 May 20;14(10):2527.
- J Mol Med (Berl). 2019 Aug;97(8):1183-1193.
- Dis Model Mech. 2023 Mar 2;dmm.049769.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Enrica Marchi, et al. Pralatrexate Is Synergistic With the Proteasome Inhibitor Bortezomib in in Vitro and in Vivo Models of T-cell Lymphoid Malignancies. Clin Cancer Res. 2010 Jul 15;16(14):3648-58.
- [2]. Francine Foss, et al. Pralatrexate Is an Effective Treatment for Relapsed or Refractory Transformed Mycosis Fungoides: A Subgroup Efficacy Analysis From the PROPEL Study. Clin Lymphoma Myeloma Leuk. 2012 Aug;12(4):238-43.
- [3]. Karen Kelly, et al. Randomized Phase 2b Study of Pralatrexate Versus Erlotinib in Patients With Stage IIIB/IV Non-Small-Cell Lung Cancer (NSCLC) After Failure of Prior Platinum-Based Therapy. J Thorac Oncol. 2012 Jun;7(6):1041-8.
- [4]. F M Sirotnak, et al. A New Analogue of 10-deazaaminopterin With Markedly Enhanced Curative Effects Against Human Tumor Xenografts in Mice. Cancer Chemother Pharmacol. 1998;42(4):313-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA