

Pim1/AKK1-IN-1

Cat. No.: HY-10371 CAS No.: 1093222-27-5 Molecular Formula: $C_{20}H_{13}N_{5}O$ Molecular Weight: 339.35 Target: Pim

Pathway: JAK/STAT Signaling

Storage: Powder -20°C 3 years

 $4^{\circ}C$ 2 years

In solvent -80°C 2 years

> -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

lس	١/:	tro		
m	VΙ	I I ()		

DMSO: 50 mg/mL (147.34 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	2.9468 mL	14.7340 mL	29.4681 mL	
	5 mM	0.5894 mL	2.9468 mL	5.8936 mL	
	10 mM	0.2947 mL	1.4734 mL	2.9468 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.37 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Pim1/AKK1-IN-1 is a potent multi-kinase inhibitor with K _d values of 35 nM/53 nM/75 nM/380 nM for Pim1/AKK1/MST2/LKB1 respectively, and also inhibits MPSK1 and TNIK.
IC ₅₀ & Target	PIM1
In Vitro	Pim1/AKK1-IN-1 is multi-kinase inhibitor, and has K_d of 380 nM against LKB1 and 53 nM against AAK1 ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nat Metab. 2022 Sep 1.
- EMBO J. 2021 Sep 2;e108028.
- Cell Rep. 2022 Aug 16;40(7):111188.
- Animals (Basel). 2022 Sep 19;12(18):2474.

See more customer validations on $\underline{www.MedChemExpress.com}$

	_	_	_			ь і		_	•
w	ь.	ь.	-	w	ь.	N	\mathbf{c}	۰,	•

[1]. Bamborough P, et al. Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J Med Chem. 2008 Dec 25;51(24):7898-914.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com