Product Data Sheet

Pentoxyverine

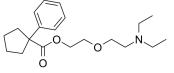
Cat. No.: HY-134004

CAS No.: 77-23-6

Molecular Formula: $C_{20}H_{31}NO_3$

Molecular Weight: 333.47

Target: Sigma Receptor; mAChR


Pathway: Neuronal Signaling; GPCR/G Protein

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (749.69 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.9988 mL	14.9939 mL	29.9877 mL
	5 mM	0.5998 mL	2.9988 mL	5.9975 mL
	10 mM	0.2999 mL	1.4994 mL	2.9988 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.24 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (6.24 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.24 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Pentoxyverine (Carbetapentane) is an orally active sigma-1 receptor agonist, with K_i s of 41 nM, 894 nM and 75 nM for σ 1, σ 2 and guinea-pig brain membran σ 1, respectively. Pentoxyverine is a muscarinic antagonist. Pentoxyverine is a potent antitussive, anticonvulsant, and spasmolytic agent. Pentoxyverine can be used for inhibiting bronchial interceptor, weakening of cough reflex, bronchial smooth muscle relaxation and reduction of airway resistance^{[1][2][3][4]}.

IC₅₀ & Target

σ1

σ2

41 nM (Ki)

894 nM (Ki)

In Vivo

Pentoxyverine (Carbetapentane; 1-32 mg/kg; SC) dose-dependently potentiates the sensitizing effect of capsaicin to the mechanical stimulus when the mice were stimulated in the paw injected with Capsaicin (HY-10448)^[4].

Pentoxyverine (16 mg/kg; SC) shows strong potentiation of Capsaicin-induced secondary mechanical allodynia^[4]. Pentoxyverine (50 mg/kg; orally;), used for positive control, increases the percentage of the aqueous ammonia-induced latent period of cough by 121.72%, inhibits cough frequency by 45.45% after administration for 7 days in mice of either sex (22-25 g)^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Female wild-type weighing 25 to 30 g ^[4]	
Dosage:	0.5, 1, 2, 4, 8, 16, 32 mg/kg	
Administration:	SC; 30 min before the intraplantar (i.pl.) administration of capsaicin (0.125 $\mu\text{g})$	
Result: Dose-dependently potentiated the sensitizing effect of capsaicin to the mechastimulus when the mice were stimulated in the paw injected with capsaicin.		

REFERENCES

- [1]. J M Entrena, et al. Sigma-1 Receptor Agonism Promotes Mechanical Allodynia After Priming the Nociceptive System with Capsaicin. Sci Rep. 2016 Nov 25:6:37835. doi: 10.1038/srep37835.
- [2]. Yuebin Ge, et al. In Vivo Evaluation of the Antiasthmatic, Antitussive, and Expectorant Activities and Chemical Components of Three Elaeagnus Leaves. Evid Based Complement Alternat Med. 2015:2015:428208.
- [3]. Mohamed SH, et, al. Extraction-free spectrophotometric assay of the antitussive drug pentoxyverine citrate using sulfonephthalein dyes. Spectrochim Acta A Mol Biomol Spectrosc. 2019 Nov 5;222:117186.
- [4]. Calderon SN, et, al. Novel 1-phenylcycloalkanecarboxylic acid derivatives are potent and selective sigma 1 ligands. J Med Chem. 1994 Jul 22;37(15):2285-91.
- [5]. Brown C, et, al. Antitussive activity of sigma-1 receptor agonists in the guinea-pig. Br J Pharmacol. 2004 Jan;141(2):233-40.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA