Product Data Sheet

PRX-07034 hydrochloride

Cat. No.: HY-14559 CAS No.: 903580-39-2 Molecular Formula: $C_{21}H_{29}Cl_2N_3O_4S$

Molecular Weight: 490.44

Target: 5-HT Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: -20°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

$$\begin{array}{c|c}
O & O & S = O \\
H - CI & N \\
N & N \\
\end{array}$$

SOLVENT & SOLUBILITY

In Vitro

DMSO: 31.25 mg/mL (63.72 mM; ultrasonic and warming and heat to 60°C)

H₂O: 4.76 mg/mL (9.71 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0390 mL	10.1949 mL	20.3899 mL
	5 mM	0.4078 mL	2.0390 mL	4.0780 mL
	10 mM	0.2039 mL	1.0195 mL	2.0390 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (4.24 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.08 mg/mL (4.24 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (4.24 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	PRX-07034 hydrochloride is a highly selective and potent 5-HT6 receptor antagonist with a K_i = 4-8 nM and an IC ₅₀ of 19 nM. PRX-07034 can be used for the research of enhancing working memory and cognitive flexibility ^[1] .				
IC ₅₀ & Target	5-HT ₆ Receptor 4-8 nM (Ki)	5-HT ₆ Receptor 19 nM (IC ₅₀)	5-HT _{1B} Receptor 260 nM (Ki)	5-HT _{1A} Receptor 420 nM (Ki)	
	5-HT _{1D} Receptor 2.8 μM (Ki)	5-HT _{2A} Receptor 2.5 μM (IC ₅₀)	5-HT _{2B} Receptor 2.5 μM (IC ₅₀)	5-HT _{2C} Receptor 3.7 μM (IC ₅₀)	

Dopamine D3 Receptor 71 nM (Ki)	Opioid μ Receptor 0.45 μM (Ki)	Histamine H2 Receptor 0.64 μM (Ki)		
PRX-07034 is both a potent and highly selective 5-HT6 receptor antagonist (\geq 100-fold selectivity for the 5-HT6 receptor compared to 68 other GPCRs, ion channels, and transporters. PRX-07034 inhibits 5-HT1A, 5-HT1B, 5-HT1D, Dopamine D3, Histamine H2, and Opioid μ receptor with K _i s of 420 nM, 260 nM, 2.8 μM, 71 nM, 0.64 μM, and 0.45 μM, respectively. PRX-07034 inhibits 5-HT2A, 5-HT2B, and 5-HT2C receptors with IC ₅₀ s of 2.5 μM, 2.5 μM, and 3.7 μM, respectively ^[1] . In functional assays, PRX-07034 demonstrates low antagonist activity for the dopamine D3 receptor (IC ₅₀ =4.8 μM) and very low agonistic activity for the opioid μ-receptor (EC ₅₀ =19 μM) [1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
PRX-07034 (0.1, 1, or 3 mg/kg; i.p.; 30 min prior to delayed spontaneous alternation testing) selectively enhances a switch to a place discrimination ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
Animal Model:	Male Long-Evans rats weighing approximately 350 ${ m g}^{[1]}$			
Dosage:	0.1, 1, or 3 mg/kg			
Administration:	Injected intraperitoneal			
Result:	1 and 3 mg/kg (but not 0.1 mg/kg) significantly enhanced delayed spontaneous alternation. The drug at 1 and 3 mg/kg also enhanced switching between a place and response strategy, but did not affect initial learning of either a place or response discrimination.			
	PRX-07034 is both a potent an compared to 68 other GPCRs, Histamine H2, and Opioid μ re 07034 inhibits 5-HT2A, 5-HT2E In functional assays, PRX-0703 low agonistic activity for the α MCE has not independently compared by the property of the second	PRX-07034 is both a potent and highly selective 5-HT6 receptor compared to 68 other GPCRs, ion channels, and transporters. F Histamine H2, and Opioid μ receptor with K _i s of 420 nM, 260 nM 07034 inhibits 5-HT2A, 5-HT2B, and 5-HT2C receptors with IC ₅₀ In functional assays, PRX-07034 demonstrates low antagonist a low agonistic activity for the opioid μ-receptor (EC ₅₀ =19 μM) [1] MCE has not independently confirmed the accuracy of these m PRX-07034 (0.1, 1, or 3 mg/kg; i.p.; 30 min prior to delayed spor a place discrimination ^[1] . MCE has not independently confirmed the accuracy of these m Animal Model: Male Long-Evans rats weighing Dosage: 0.1, 1, or 3 mg/kg Administration: Injected intraperitoneal Result: 1 and 3 mg/kg (but not 0.1 mg/k alternation. The drug at 1 and 3 response strategy, but did not a green and transporters.		

REFERENCES

[1]. Eric G Mohler, et al. The effects of PRX-07034, a novel 5-HT6 antagonist, on cognitive flexibility and working memory in rats. Psychopharmacology (Berl). 2012 Apr;220(4):687-96.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com