PROTAC RIPK degrader-2

MedChemExpress

®

Cat. No.:	HY-111866			
CAS No.:	1801547-16-9			
Molecular Formula:	C ₅₂ H ₆₅ N ₇ O ₁₁ S ₃			
Molecular Weight:	1060.31			
Target:	RIP kinase; PROTACs			
Pathway:	Apoptosis; PROTAC			
Storage:	Powder	-20°C	3 years	
		4°C	2 years	
	In solvent	-80°C	2 years	
		-20°C	1 year	

SOLVENT & SOLUBILITY

In Vitro	DMSO : 150 mg/mL (141.47 mM; Need ultrasonic)						
Prep Stoc	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg		
		1 mM	0.9431 mL	4.7156 mL	9.4312 mL		
		5 mM	0.1886 mL	0.9431 mL	1.8862 mL		
		10 mM	0.0943 mL	0.4716 mL	0.9431 mL		
	Please refer to the solubility information to select the appropriate solvent.						
In Vivo	1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 7.5 mg/mL (7.07 mM); Clear solution						
	2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 7.5 mg/mL (7.07 mM); Suspended solution; Need ultrasonic						

	ту	
DIOLOGICALACITY		
Description	PROTAC RIPK degraders -2 is a which is highly selective to the activate ion channels in cance ligands, involved in a variety o	non-peptide PROTAC based on von Hippel-Lindau and targets serine-threonine kinase RIPK2, degradation of RIPK2. PROTAC RIPK degrader-2 acts as an activator to increase cell death and r cells. PROTAC RIPK degrader-2 also can inhibit protein interactions, such as receptors and f diseases, such as cancer and diabetes ^{[1][2]} .
IC ₅₀ & Target	RIPK2	VHL

REFERENCES

Product Data Sheet

 $(\mathbf{x}_{n},\mathbf{y},\mathbf{y}_{n},\mathbf{y}_{n},\mathbf{y}_{n},\mathbf{y}_{n},\mathbf{y}_{n},\mathbf{y}_{n},\mathbf{y}$

[1]. Wang C, et al. VHL-based PROTACs as potential therapeutic agents: Recent progress and perspectives. Eur J Med Chem. 2022 Jan 5;227:113906.

[2]. Bondeson DP, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. 2015 Aug;11(8):611-7.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA