Product Data Sheet

PRN694

Cat. No.: HY-12680 CAS No.: 1575818-46-0 Molecular Formula: $C_{28}H_{35}F_{2}N_{5}O_{2}S$

Molecular Weight: 543.67 Target: Itk

Pathway: Protein Tyrosine Kinase/RTK

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (229.92 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.8394 mL	9.1968 mL	18.3935 mL
	5 mM	0.3679 mL	1.8394 mL	3.6787 mL
	10 mM	0.1839 mL	0.9197 mL	1.8394 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (3.83 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.08 mg/mL (3.83 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (3.83 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	PRN694 is an irreversible, highly selective and potent covalent interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) dual inhibitor with IC ₅₀ s of 0.3 nM and 1.4 nM, respectively. PRN694 exhibits extended target residence time on ITK and RLK, enabling durable attenuation of effector cells in vitro and in vivo ^[1] .
IC ₅₀ & Target	IC50: 0.3 nM (ITK), 1.4 nM (RLK), 3.3 nM (TEC), 17 nM (BTK), 17 nM (BMX), 30 nM (JAK3), 125 nM (BLK) ^[1]
In Vitro	PRN694 inhibits TEC, BTK, BMX, BLK, JAK3 with IC $_{50}$ s of 3.3, 17, 17, 125, 30 nM, respectively $^{[1]}$.

?Immunoblot analysis of TCR activation pathways reveales that PRN694 blocks activation or nuclear translocation of NFAT1, JunB, plkB α , and pERK. Results reveal inhibition of Ca²⁺ signaling with PRN694 at all concentrations above 1 nM. PRN694 significantly attenuates NK cell FcR-induced killing at concentrations exceeding 0.37 μ M^[1].

?Day 6 flow cytometry analysis reveals that PRN694 significantly inhibits the anti-CD3/CD28-induced proliferation of both CD4 and CD8 T-cells (p<0.01) $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

The PRN694 occupancy of ITK is 98, 95, and 54% at 1, 6, and 14 h, respectively. The concentrations of PRN694 in the plasma are 2.8, 0.66, and 0.027 μ M at 1, 6, and 14 h, respectively. At 14 h, the plasma level of PRN694 is over 10 fold lower than the IC $_{50}$ in whole blood. RN694 treatment also results in significantly lower weights relative to vehicle (p<0.05)^[1].

? Colitis studies show reduced numbers of CD4 $^+$ T cells present in the colonic epithelium of PRN694-treated mice compare with controls^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

Recombinant ITK at a final concentration of $0.5 \,\mu\text{M}$ in $50 \,\text{mM}$ Hepes, pH 7.5, $10 \,\text{mM}$ MgCl $_2$, 0.01% Triton X-100, and $1 \,\text{mM}$ EGTA are combined with $1.5 \,\mu\text{M}$ PRN694 for $90 \,\text{min}$ to facilitate binding. The mixture is then diluted $50 \,\text{fold}$ to initiate dissociating of the ligand from the enzyme, and $10 \,\mu\text{L}$ is transferred to a Greiner 384-well black plate. Europium-coupled anti-His $_6$ antibody is added to each well and incubated for $5 \,\text{min}$, followed by the addition of an ITK binding fluorescent tracer. The tracer binds to ITK as a function of ligand dissociation, and binding is detected by time-resolved FRET between the europium-coupled antibody and the tracer on a plate reader. Time points acquired are 0.25, 1, 3, 6, and $24 \,\text{h}^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Assay [1]

Cells are cultured in vitro at 37°C and 5% CO $_2$ using RPMI 1640 with 10% fetal calf serum. Cells are pretreated for 30 min with PRN694 or other inhibitors and then washed two times. T-cells are then stimulated for 6 h with 1 µg/mL soluble anti-CD3 for CD69 activation, which is detected by flow cytometry, or 45 min with plate-bound anti-CD3 (10 µg/mL plating concentration) and soluble anti-CD28 (1 µg/mL) for downstream signal analysis by immunoblotting. NK cells are stimulated for 6 h with plate-bound anti-CD52 for CD107a/b activation, detected by flow cytometry, or for 45 min for downstream signal analysis by immunoblotting^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [1]

Mice are randomized by weight and sensitized with aliquots of 150 μ L of 5% oxazolone in 3 parts ethanol and 1 part acetone on their shaved abdomens. Seven days after the sensitization, the mice are challenged with 10 μ L of 3% oxazolone on the front and back of the right ears. The left ears are treated with the ethanol/acetone mixture. One hour prior to the challenge, the animals received either vehicle control (5% ethanol, 95% Captex 355 NP/EF, intraperitoneal injection at 5 mL/kg), 20 mg/kg PRN694 in 5% ethanol, 95% Captex (intraperitoneal injection at 5 mL/kg), or 0.5 mg/kg dexamethasone (intraperitoneal injection at 5 mL/kg). A control group of animals receive no oxazolone or drug treatment. Twenty-four hours after the oxazolone challenge, the mice are sacrificed, and a 7 mm disc is punched out of each ear and weighed to measure edema^[1].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

REFERENCES

[1]. Zhong Y, et al. Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694. J Biol Chem. 2015 Mar 6;290(10):5960-78.

[2]. Cho HS, et al. A Small Molecule Inhibitor of ITK and RLK Impairs Th1 Differentiation and Prevents Colitis Disease Progression. J Immunol. 2015 Nov 15;195(10):4822-31.

Page 2 of 3 www.MedChemExpress.com

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com