PRMT5-IN-1

®

MedChemExpress

Cat. No.:HY-126256CAS No.:2366149-83-7Molecular Formula:C1,9H,9CIN4O5Molecular Weight:418.83Target:Histone MethyltransferasePathway:EpigeneticsStorage:Please store the product under the recommended conditions in the Certificate or Analysis.	$ \begin{array}{c} & \overset{OH}{\underset{HO}{}{}} \\ & \overset{N}{\underset{HO}{}{}} \\ & \overset{N}{\underset{HO}{}{}} \\ & \overset{N}{\underset{HO}{}} \\ \end{array} \end{array} \begin{array}{c} \overset{OH}{\underset{HO}{}{}} \\ & \overset{OH}{\underset{HO}{}{}} \\ & \overset{OH}{\underset{HO}{}} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{}} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{}} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{\overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{\overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{\overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{\overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} & \overset{OH}{\underset{HO}{\underset{HO}{} \\ & \overset{OH}{\underset{HO}{} & \overset{OH}{\underset{HO}{\underset{HO}{\underset{HO}{} & \overset{OH}{\underset{HO}{} & \overset{OH}{\underset{HO}{\underset{HO}{} & \overset{OH}{\underset{HO}{} & \overset{OH}{} & \overset{OH}{\underset{HO}{} & \overset{OH}{\underset{HO}{} & \overset{OH}{\underset{HO}{} & \overset{OH}{\underset{HO}{} & \overset{OH}{} & \overset{OH}{$
---	--

BIOLOGICAL ACTIV	ТҮ ———		
Description	PRMT5 IN-1, a hemiaminal, is a potent, selective protein arginine methyltransferase 5 (PRMT5) inhibitor with an IC ₅₀ of 11 nM for PRMT5/MEP50. PRMT5 IN-1 can be converted to aldehydes and react with C449 to form covalent adducts under physiological conditions ^[1] .		
IC ₅₀ & Target	PRMT5		
In Vitro	PRMT5 IN-1 (0-500 nM) inhibits the PRMT5/MEP50 complex [K _{inact} /K _I =1.2×10 ⁵ M ⁻¹ min ⁻¹] very rapidly with a K _{inact} of 0.068 min ⁻¹ and a good binding affinity (K _I =55 nM) ^[1] . PRMT5 IN-1 (0-1000 nM; 3 d; Granta-519 cells) inhibits the expression of cellular sDMA with an IC ₅₀ value of 0.012 μM ^[1] . PRMT5 IN-1 (0-1 μM; 10 d; Granta-519 cells) inhibits cell proliferation in a dose-dependent manner with an IC ₅₀ value of 0.068 μM ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay ^[1]		
	Cell Line:	Granta-519 cells	
	Concentration:	0, 0.0001524, 0.000457, 0.001372, 0.004115, 0.012346, 0.037037, 0.111111, 0.333333 and 1 μ Μ	
	Incubation Time:	10 days	
	Result:	Inhibited cell proliferative, in which cells died on day 10 at high concentrations (0.3 and 1 μ M).	
	Western Blot Analysis ^[1]		
	Cell Line:	Granta-519 cells	
	Concentration:	0, 0.05, 0.15, 0.46, 1.37, 4, 12, 37, 111, 333, 1000 nM	
	Incubation Time:	3 days	
	Result:	Inhibited cellular sDMA in Granta-519 cells in a dose-dependent manner.	

REFERENCES

[1]. Lin H, et, al. Discovery of Potent and Selective Covalent Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors. ACS Med Chem Lett. 2019 May 22;10(7):1033-1038.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA