Product Data Sheet

PF-3758309 dihydrochloride

Cat. No.: HY-13007B

Molecular Formula: $C_{25}H_{32}Cl_2N_8OS$

563.55 Molecular Weight:

Target: PAK; Apoptosis

Pathway: Cell Cycle/DNA Damage; Cytoskeleton; Apoptosis

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description $PF-3758309 \ (PF-03758309) \ dihydrochloride is a potent, orally available, and reversible ATP-competitive inhibitor of PAK4 \ (K_d$

> = 2.7 nM; K_i=18.7 nM). PF-3758309 dihydrochloride has the expected cellular functions of a PAK4 inhibitor: inhibition of anchorage-independent growth, induction of apoptosis, cytoskeletal remodeling, and inhibition of proliferation $^{[1][2][3]}$.

IC₅₀ & Target PAK4 PAK1 PAK5 PAK6

> 18.7 nM (Ki) 13.7 nM (Ki) 18.1 nM (Ki) 17.1 nM (Ki)

PAK2 PAK3 PAK4 190 nM (IC₅₀) 99 nM (IC₅₀) 2.7 nM (Kd)

In Vitro PF-3758309 dihydrochloride has similar enzymatic potency against the kinase domains of the other group B PAKs (PAK5, Ki

=18.1 nM; PAK6, K_i=17.1 nM) and group A PAK1 (K_i=13.7 nM), but is less active against the other two group A PAKs (PAK2, IC₅₀ =190 nM; PAK3, IC_{50} =99 nM)^[1].

In cells, PF-3758309 dihydrochloride inhibits phosphorylation of the PAK4 substrate GEF-H1 (IC₅₀=1.3 nM) and anchorage-

independent growth of a panel of tumor cell lines (IC_{50} =4.7 nM) $^{[1]}$.

PF-3758309 dihydrochloride also inhibits endogenous pGEF-H1 accumulation in HCT116 cells. PF-3758309 potently inhibits cellular proliferation (IC₅₀=20 nM) and anchorage-independent growth (IC₅₀=27 nM) of A549 cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo PF-3758309 dihydrochloride (7.5-30 mg/kg; p.o.; twice daily for 9-18 days) results in statistically significant tumor growth inhibition (TGI) in HCT116 and A549 models^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Female nu/nu, CRL breed 6–8 weeks old mice (bearing HCT116 and A549 tumors) $^{\left[1 ight]}$
Dosage:	7.5-30 mg/kg
Administration:	Oral administration; twice daily for 9-18 days
Result:	Significant tumor growth inhibition (TGI) in HCT116 and A549 models.

CUSTOMER VALIDATION

- Science. 2017 Dec 1;358(6367):eaan4368.
- Sci Transl Med. 2018 Jul 18;10(450):eaaq1093.
- Exp Cell Res. 2020 Oct 15;395(2):112187.
- · Harvard Medical School LINCS LIBRARY

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Murray, Brion W., et al. Small-molecule p21-activated kinase inhibitor PF3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proceedings of the National Academy of Sciences of the United States of America (2010), 107(20), 9446-9451, S94.
- [2]. Zhao ZS, et al. Do PAKs make good drug targets? F1000 Biol Rep. 2010 Sep 23;2:70.
- [3]. Ryu BJ, et al. PF-3758309, p21-activated kinase 4 inhibitor, suppresses migration and invasion of A549 human lung cancer cells via regulation of CREB, NF-κB, and β-catenin signalings. Mol Cell Biochem. 2014 Apr;389(1-2):69-77.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA