

Product Data Sheet

PF-06649298

Cat. No.: HY-120103 CAS No.: 1854061-16-7

Molecular Formula: $C_{16}H_{22}O_{5}$ Molecular Weight: 294.34

Sodium Channel Target:

Pathway: Membrane Transporter/Ion Channel

Storage: Powder -20°C

> 4°C 2 years -80°C In solvent 6 months

-20°C 1 month

3 years

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (339.74 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	3.3974 mL	16.9872 mL	33.9743 mL	
	5 mM	0.6795 mL	3.3974 mL	6.7949 mL	
	10 mM	0.3397 mL	1.6987 mL	3.3974 mL	

Please refer to the solubility information to select the appropriate solvent.

ы	ΔI	00	100	1 1	îTIV	170

Description PF-06649298 is a sodium-coupled citrate transporter (NaCT or SLC13A5) inhibitor. PF-06649298 specifically interacts with NaCT with an IC $_{50}$ value of 16.2 μM to inhibits the transport of citrate in human hepatocytes. PF-06649298 can be used for

the research of regulating glucose metabolism and lipid metabolism^{[1][2]}.

IC₅₀ & Target IC50: 408 nM (citrate uptake in HEK_{NaCT}), 16.2 μM (citrate uptake in Human Heps), 4.5 μM (citrate uptake in Mouse Heps), 🛭

100 μM (citrate uptake in HEK_{NaCD1}), ⊠100 μM (citrate uptake in HEK_{NaCD3})^{[1][2]}

In Vitro PF-06649298 (0-100 μ M; 30 min) inhibits citrate uptaken in cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line: HEK-293 cells expressing NaCT, NaDC1 or NaDC3, human hepatocytes and mouse epatocytes Concentration: $0-100 \mu M$

	Incubation Time:	30 min	
	Result:	Showed a selectivity for NaCT over the dicarboxylate transporters NaDC1 and NaDC3. Inhibited citrate uptake in HEK-293 cells expressing NaCT, NaDC1 or NaDC3, human hepatocytes and mouse epatocytes with IC ₅₀ s of 408 nM, \(\Delta 100 \text{ μM}, \(\	
In Vivo	PF-06649298 (250 mg/kg; p.o. twice a day; for 21 days) reverses glucose intolerance of high fat diet (HFD) mice ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Mice with high fat diet (HFD) administration ^[2]	
	Dosage:	250 mg/kg	
	Administration:	Oral gavage; 250mg/kg twice a day; for 21 days	
	Result:	Decreased plasma glucose, hepatic triglycerides, diacylglycerides, and acyl-carnitines concentration of livers in HFD mice. Totally reversed glucose intolerance of HFD mice.	

REFERENCES

[1]. Huard K, et al. Optimization of a Dicarboxylic Series for in Vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family. J Med Chem. 2016 Feb 11;59(3):1165-75.

[2]. Huard K, et al. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5). Sci Rep. 2015 Dec 1;5:17391.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA