Product Data Sheet

PD 168568 dihydrochloride

 Cat. No.:
 HY-103407A

 CAS No.:
 1782532-06-2

 Molecular Formula:
 C₂₂H₂₉Cl₂N₃O

Molecular Weight: 422.39

Target: Dopamine Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	PD 168568 dihydrochloride is a orally active and potent dopamine receptor D_4 (DRD ₄) antagonist. PD 168568 dihydrochloride contains an isoindolinone and is selective for the D_4 receptor versus D_2 and D_3 , with K_i values of 8.8, 1842, and 2682 nM, respectively. PD 168568 dihydrochloride can be used for glioblastoma (GBM) research ^{[1][2]} .		
IC ₅₀ & Target	D ₄ Receptor 8.8 nM (Ki)	D ₂ Receptor 1842 nM (Ki)	D ₃ Receptor 2682 nM (Ki)
In Vitro	PD 168568 dihydrochloride shows selectivity inhibition toward glioblastoma neural stem cells (GNS), with IC $_{50}$ of 25-50 μ M $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	PD 168568 dihydrochloride (3 mg/kg, Oral) has ability to inhibit amphetamine-stimulated locomotor activity in the rat ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	$Rat^{[1]}$	
	Dosage:	3 mg/kg	
	Administration:	Oral administration	
	Result:	Inhibit amphetamine (0.5 mg/kg, i.p.) stimulated locomotor activity.	

REFERENCES

- [1]. Dolma S, et al. Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells. Cancer Cell. 2016 Jun 13;29(6):859-873.
- [2]. Lindsley CW, et al. Return of D4 Dopamine Receptor Antagonists in Drug Discovery. J Med Chem. 2017 Sep 14;60(17):7233-7243.
- [3]. Belliotti TR, et al. Isoindolinone enantiomers having affinity for the dopamine D4 receptor. Bioorg Med Chem Lett. 1998 Jun 16;8(12):1499-502.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com