

Product Data Sheet

PD-118057

Cat. No.: HY-108594

CAS No.: 313674-97-4

Molecular Formula: $C_{21}H_{17}Cl_2NO_2$ Molecular Weight: 386.27

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel

Storage: Powder -20°C 3 years

In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (258.89 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5889 mL	12.9443 mL	25.8886 mL
	5 mM	0.5178 mL	2.5889 mL	5.1777 mL
	10 mM	0.2589 mL	1.2944 mL	2.5889 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.47 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	PD-118057 is a hERG channel activator without causing hERG blockade. PD-118057 activates hERG channel to suppress changes in membrane excitability $^{[1][2]}$.
IC ₅₀ & Target	Human ether-a-go-go-related gene channel $^{[1]}$
In Vitro	PD-118057 (3 μ M and 10 μ M) specifically increases hERG current and inhibits action potential duration in guinea pig ventricular muscle in acute isolation of guinea pig cardiomyocytes ^{[2][3]} . PD-118057 (10 μ M) reverses the current inhibition induced by Dof and Mox without changing the "hump" shape of I _{Kr} current recorded by action potential clamp, and only slightly increases the peak value of the suppressed current ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Yeung SY, et al. Pharmacological and biophysical isolation of K+ currents encoded by ether-à-go-go-related genes in murine hepatic portal vein smooth muscle cells. Am J Physiol Cell Physiol. 2007 Jan;292(1):C468-76.
- [2]. Meng J, et al. Effect of PD-118057attenuates hypokalaemia or drug-induced prolongation of action potential duration in guinea pig ventricular myocytes. 2014,29(05):536-538.
- [3]. Mao H, et al. Pharmacologic Approach to Defective Protein Trafficking in the E637K-hERG Mutant with PD-118057 and Thapsigargin. PLoS One. 2013 Jun 19;8(6):e65481.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com