Proteins

Product Data Sheet

PACOCF3

Cat. No.: HY-108607 CAS No.: 141022-99-3 Molecular Formula: $C_{17}H_{31}F_{3}O$ Molecular Weight: 308.42

Target: Phospholipase

Pathway: Metabolic Enzyme/Protease Storage: Powder -20°C 3 years

> 4°C 2 years -80°C In solvent 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 33.33 mg/mL (108.07 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.2423 mL	16.2117 mL	32.4233 mL
	5 mM	0.6485 mL	3.2423 mL	6.4847 mL
	10 mM	0.3242 mL	1.6212 mL	3.2423 mL

Please refer to the solubility information to select the appropriate solvent.

BIOL	α CI	~ 1	ACTI	MTV
вил	10/61	LAI	$\Delta U = I$	$\mathbf{v} = \mathbf{v}$

Description PACOCF3 (Palmityltrifluoromethylketone) is a selective phospholipase A2 inhibitor with an IC $_{50}$ of 3.8 μ M. PACOCF3 alters Ca ²⁺ signaling in renal tubular cells^{[1][2]}.

IC₅₀ & Target PLA2

 $3.8 \, \mu M \, (IC_{50})$

In Vitro At a concentration of 20 μ M, PACOCF3 does not change basal cytosolic free calcium concentrations ([Ca²⁺]_i), but at

concentrations of 50-250 µM PACOCF3 induced an increase in [Ca²⁺]_i by activating extracellular Ca²⁺ entry which is partly

suppressed by 50 µM La3+[2].

The effect of PACOCF3 is abolished by removal of extracellular Ca^{2+} . PACOCF3 (10 μ M) enhances both the peak value and the area under the curve of the $[Ca^{2+}]_i$ increase induced by 10 μ M ATP and 1 μ M bradykinin by potentiating extracellular Ca^{2+}

influx without affecting internal Ca²⁺ release^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. E J Ackermann, et al. Inhibition of macrophage Ca(2+)-independent phospholipase A2 by bromoenol lactone and trifluoromethyl ketones. J Biol Chem. 1995 Jan 6;270(1):445-50.

[2]. C R Jan, et al. Dual action of palmitoyl trifluoromethyl ketone (PACOCF3) on Ca2+ signaling: activation of extracellular Ca2+ influx and alteration of ATP- and bradykinin-induced Ca2+ responses in Madin Darby canine kidney cells. Arch Toxicol. 2000 Oct;74

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com