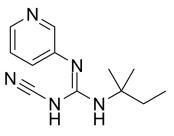
Proteins

P-1075

Cat. No.: HY-108573 CAS No.: 60559-98-0 Molecular Formula: $C_{12}H_{17}N_{5}$ Molecular Weight: 231

Target: Potassium Channel


Pathway: Membrane Transporter/Ion Channel

-20°C Storage: Powder 3 years

2 years

-80°C In solvent 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (1082.25 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.3290 mL	21.6450 mL	43.2900 mL
	5 mM	0.8658 mL	4.3290 mL	8.6580 mL
	10 mM	0.4329 mL	2.1645 mL	4.3290 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (9.00 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (9.00 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (9.00 mM); Clear solution

BIOLOGICAL ACTIVITY

Description P-1075 is a potent activator of sulfonylurea receptor 2-associated ATP-sensitive potassium channels (SUR2-K_{IR}6), with an EC $_{50}$ value of 45 nM for SUR2B-K $_{\rm IR}$ 6 channel activation $^{[1]}$. P-1075 also P1075 opens mitochondrial K(ATP) channels and

generates reactive oxygen species resulting in cardioprotection of rabbit hearts^[2].

EC50: 45 nM (SUR2-K_{IR}6)^[1]. IC₅₀ & Target

In Vitro P1075 (3 nM) induces monophasic inhibition curves by competition-binding experiments, in the presence of MgATP^[1]. P1075 (100 μ M; 10 min) leads to rabbit cardiomyocytes to produce ROS in a K_{ATP}-dependent fashion^[2]. P1075 (150 nM) reduces infarct size in isolated rabbit hearts compared to control animals (10.6% of the area at risk vs. 31.5%, P < 0.05)^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	COS-7 cells	
Concentration:	3-15 nM	
Incubation Time:		
Result:	Showed IC ₅₀ value of 15 nM and Hill coefficient of 1.0.	
Cell Viability Assay ^[2]		
Cell Line:	Adult rabbit cardiomyocytes	
Concentration:	100 μΜ	
Incubation Time:	10 min	
Result:	Led to a 44% increase in ROS generation (P<0.001 vs. untreated cells).	

In Vivo

P1075 (intravenous injection; $1\mu g/kg$; once) treatment shows the reduction of infarct size in ischemia model^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Sprague-Dawley rats subjected to 30 minutes of ischemia and 2 hours of reperfusion [3]	
Dosage:	1μg/kg	
Administration:	Intravenous injection; 1μg/kg; once	
Result:	Reduced infarct size (41.8%) compared to the vehicle.	

REFERENCES

[1]. Gross ER, et al. GSK3beta inhibition and K(ATP) channel opening mediate acute opioid-induced cardioprotection at reperfusion. Basic Res Cardiol. 2007 Jul;102(4):341-

[2]. Schwanstecher M, et al. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors. EMBO J. 1998 Oct 1;17(19):5529-35.

[3]. Oldenburg O, et al. P1075 opens mitochondrial K(ATP) channels and generates reactive oxygen species resulting in cardioprotection of rabbit hearts. J Mol Cell Cardiol. 2003 Sep;35(9):1035-42.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA