Product Data Sheet

Otenzepad

Cat. No.:HY-101381CAS No.:102394-31-0Molecular Formula: $C_{24}H_{31}N_5O_2$ Molecular Weight:421.54Target:mAChR

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Powder

4°C 2 years

3 years

In solvent -80°C 6 months

-20°C

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (59.31 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.3723 mL	11.8613 mL	23.7225 mL
	5 mM	0.4745 mL	2.3723 mL	4.7445 mL
	10 mM	0.2372 mL	1.1861 mL	2.3723 mL

Please refer to the solubility information to select the appropriate solvent.

חם	$\mathbf{I} \boldsymbol{\alpha}$	م ا الم		$\Lambda \subset I$	PL VAV	$\mathbf{H}\mathbf{T}\mathbf{V}$
BIO	I E A Y	erra	7 A 1	Δ\.		шү
		3112	78.1		-	

Description	Otenzepad (AF-DX 116) is a selective and competitive M2 muscarinic acetylcholine receptor antagonist, with IC ₅₀ values of 640 nM and 386 nM for rabbit peripheral lung and rat heart, respectively ^[1] .	
IC ₅₀ & Target	640 nM (M2 muscarinic acetylcholine receptor in rabbit peripheral lung), 386 nM (M2 muscarinic acetylcholine receptor in rat heart) ^[1] .	
In Vivo	Otenzepad (0.5, 1 mg/kg, s.c., in rats) significantly improved win-stay acquisition relative to vehicle-injected controls ^[2] . Otenzepad (2 mg/kg, s.c., in rats) significantly improved retention relative to vehicle controls ^[2] . Otenzepad (0.3, 1.0, or 3.0 mg/kg, ip, in mice) potentiates the effects of glucose and reverses the effects of insulin on memory ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Animal Model: Forty-eight male Long-Evans rats (325-350 g) ^[2] .	

Dosage:	0.25, 0.5, 1.0 and 2.0 mg/kg.			
Administration:	S.C. on the dorsum of the neck once.			
Result:	Doses of 0.5 and 1.0 mg/kg significantly improved acquisition relative to vehicle controls, while doses of 0.25 and 2.0 mg/kg had no effect.			
Animal Model:	Adult male Swiss mice (age 60–70 days; weight 25-30 g) ^[3] .			
Dosage:	0.3, 1.0, or 3.0 mg/kg.			
Administration:	IP once.			
Result:	Enhanced retention in an inverted-U dose–response manner, with significant enhancement seen at 1.0 mg/kg ($U_{15,15}$ = 49, p < 0.02, compared with saline-saline-injected control group).			

REFERENCES

- [1]. Bloom JW, et al. Heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex demonstrated by the selective antagonist AF-DX 116. Life Sci. 1987 Jul 27;41(4):491-6.
- [2]. Packard MG, et al. Post-training injection of the acetylcholine M2 receptor antagonist AF-DX 116 improves memory. Brain Res. 1990 Jul 30;524(1):72-6.
- [3]. Kopf SR, et al. AF-DX 116, a presynaptic muscarinic receptor antagonist, potentiates the effects of glucose and reverses the effects of insulin on memory. Neurobiol Learn Mem. 1998 Nov;70(3):305-13.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA