Proteins

Ononetin

Cat. No.: HY-108451 CAS No.: 487-49-0 $C_{15}H_{14}O_4$ Molecular Formula: Molecular Weight: 258.27 Target: TRP Channel

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (387.19 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.8719 mL	19.3596 mL	38.7192 mL
	5 mM	0.7744 mL	3.8719 mL	7.7438 mL
	10 mM	0.3872 mL	1.9360 mL	3.8719 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (9.68 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.5 mg/mL (9.68 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (9.68 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Ononetin, a natural deoxybenzoin, is a potent and selective TRPM3 channel blocker with an IC $_{50}$ of 0.3 μ M $^{[1]}$.
IC ₅₀ & Target	TRPM3 0.3 μ M (IC ₅₀)
In Vitro	Ononetin (1-10 μ M) completely and reversibly abrogates Ca ²⁺ entry and ionic currents through recombinantly expressed TRPM3 α 2 and block the pregnenolone sulphate-inducible Ca ²⁺ entry in primary cultures of mouse or rat dorsal root ganglia

	(DRG) neurones, indicating biological activity towards endogenously expressed TRPM3 ^[1] . Oxidative intermediates of Ononetin may be involved in activating TRPA1, but not in the block of TRPM3 by Ononetin ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Ononetin (10 mg/kg, i.p.) treatment completely reverses established Freund's Complete Adjuvant (FCA)-induced heat hypersensitivity, demonstrating that the loss of hypersensitivity in Trpm3 ^{-/-} mice is unlikely to be caused by developmental or compensatory mechanisms and suggests that TRPM3 may be a tractable target for inflammatory pain ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. I Straub, et al. Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3. Br J Pharmacol. 2013 Apr;168(8):1835-50.

[2]. Omar Alkhatib, et al. Promiscuous G-Protein-Coupled Receptor Inhibition of Transient Receptor Potential Melastatin 3 Ion Channels by G $\beta\gamma$ Subunits. J Neurosci. 2019 Oct 2;39(40):7840-7852.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA