## Oleoylethanolamide

Cat. No.: HY-107542 CAS No.: 111-58-0 Molecular Formula: C<sub>20</sub>H<sub>39</sub>NO<sub>2</sub> Molecular Weight: 325.53

Endogenous Metabolite; PPAR Target:

Pathway: Metabolic Enzyme/Protease; Cell Cycle/DNA Damage

Storage: Powder -20°C 3 years In solvent

-80°C 6 months

-20°C 1 month

**Product** Data Sheet

### **SOLVENT & SOLUBILITY**

In Vitro

DMSO: 20.83 mg/mL (63.99 mM; Need ultrasonic)

| Preparing<br>Stock Solutions | Solvent Mass<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|------------------------------|-------------------------------|-----------|------------|------------|
|                              | 1 mM                          | 3.0719 mL | 15.3596 mL | 30.7191 mL |
|                              | 5 mM                          | 0.6144 mL | 3.0719 mL  | 6.1438 mL  |
|                              | 10 mM                         | 0.3072 mL | 1.5360 mL  | 3.0719 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.39 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.39 mM); Clear solution

### **BIOLOGICAL ACTIVITY**

| Description               | Oleoylethanolamide is a high affinity endogenous PPAR- $\alpha$ agonist, which plays an important role in the treatment of obesity and arteriosclerosis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| IC <sub>50</sub> & Target | Human Endogenous PPAR-α<br>Metabolite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| In Vitro                  | Oleoylethanolamide (OEA), an endogenous PPAR- $\alpha$ ligand, attenuates liver fibrosis targeting hepatic stellate cells. Oleoylethanolamide suppresses TGF- $\beta$ 1 induced hepatic stellate cells (HSCs) activation in vitro via PPAR- $\alpha$ . To assess the impact of Oleoylethanolamide on HSCs activation, the expression levels of $\alpha$ -SMA and Col1a in TGF- $\beta$ 1-stimulated HSCs are examined by qPCR. The mRNA levels of $\alpha$ -SMA and Col1a are markedly induced in the group of CFSC cells with TGF- $\beta$ 1 (5 ng/mL) stimulation for 48h, while the mRNA levels are suppressed when treated with Oleoylethanolamide in a dose- |  |  |

dependent manner. Immunofluorescence and western blot results show that Oleoylethanolamide treatment dose-dependently inhibits the protein expression of  $\alpha$ -SMA, the marker of HSC activation. The inhibitory effects of Oleoylethanolamide on HSCs activation are completely blocked by PPAR- $\alpha$  antagonist MK886 (10  $\mu$ M). Moreover, the mRNA and protein expression levels of PPAR- $\alpha$  are down-regulated with TGF- $\beta$ 1 stimulation, while Oleoylethanolamide treatment restores these changes in dose-dependent manner. In addition, the phosphorylation of Smad 2/3 is upregulated in the presence of TGF- $\beta$ 1 stimulation, consistent with the observed effects on HSC activation, while Oleoylethanolamide (10  $\mu$ M) reduces the phosphorylation of Smad2/3 in CFSC simulated with TGF- $\beta$ 1[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

#### In Vivo

Oleoylethanolamide (OEA) can significantly suppress the pro-fibrotic cytokine TGF- $\beta$ 1 negatively regulate genes in the TGF- $\beta$ 1 signaling pathway ( $\alpha$ -SMA, collagen 1a, and collagen 3a) in mice models of hepatic fibrosis. Treatment with Oleoylethanolamide (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuates the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs)<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

#### **PROTOCOL**

#### Cell Assay [1]

CFSC, HSC cell lines are first obtained from cirrhotic rat liver, and have a similar phenotype to that of early passage primary HSCs. CFSC cells are cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. All cells are cultured in 6-well culture plates under 37°C and 5%  $CO_2$  in an incubator. The medium is replaced every two days, and the cells are harvested and diluted at a ratio of 1:3 twice a week. In experiments, HSCs are pretreated with the experimental concentration of Oleoylethanolamide (30  $\mu$ M, 10  $\mu$ M, 3  $\mu$ M) before stimulation with 5 ng/mL TGF- $\beta$ 1. mRNA expression levels of  $\alpha$ -SMA (A) and Col1a (B) are analyzed by real-time PCR<sup>[1]</sup>. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

# Animal Administration [1]

#### Mice<sup>[1]</sup>

The Sv/129 mice and PPAR- $\alpha$  knockout mice are maintained in a room with controlled temperature (21-23°C), humidity (55-60%) and lighting (12 h light/dark cycles) and given water ad libitum. Mice are randomly divided for methionine choline-deficient (MCD) and thioacetamide (TAA) experiments. In the MCD-diet feeding experiment, wild-type Sv/129 mice and PPAR- $\alpha$  knockout mice are each divided into three groups (n=8 /group): (i) control group receive normal diet; (ii) fed with MCD diet and injected with the vehicle (5% Tween-80+5% PEG400+90% saline, 5 mL/kg/day, 8 weeks, intraperitoneal injection, i.p.); (iii) fed with MCD diet along with Oleoylethanolamide administration (5 mg/kg/day; 8 weeks, i.p.). In another set of experiment, all the wild-type mice and PPAR- $\alpha$  knockout mice are given standard chow diet, and are randomly separated into three groups: the control group is not administrated TAA or Oleoylethanolamide but is injected with the saline; the TAA group is injected with TAA (160 mg/kg, three times per week, 6 weeks, dissolved in saline, i.p.) plus the corresponding vehicle; the Oleoylethanolamide group is both injected with TAA and Oleoylethanolamide (5 mg/kg/day; 6 weeks, i.p.)<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

#### **REFERENCES**

[1]. Chen L, et al. Oleoylethanolamide, an endogenous PPAR-a ligand, attenuates liver fibrosis targeting hepatic stellate cells. Oncotarget. 2015 Dec 15;6(40):42530-40

Page 2 of 3 www.MedChemExpress.com

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$ 

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com