Proteins

Product Data Sheet

Nicotinamide riboside tartrate

Cat. No.: HY-123033B CAS No.: 2415657-86-0

Molecular Formula: C₁₅H₂₀N₂O₁₁ Molecular Weight: 404.33

Target: Sirtuin; Endogenous Metabolite

Pathway: Cell Cycle/DNA Damage; Epigenetics; Metabolic Enzyme/Protease

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

BIOLOGICAL ACTIVITY

Description Nicotinamide riboside tartrate, an orally active NAD⁺ precursor, increases NAD⁺ levels and activates SIRT1 and SIRT3.

> Nicotinamide riboside tartrate is a source of vitamin B3 (niacin) and enhances oxidative metabolism, protection against high fat diet-induced metabolic abnormalities [1]. Nicotinamide riboside tartrate reduces cognitive deterioration in a transgenic

mouse model of Alzheimer's disease^[2].

IC₅₀ & Target SIRT1 SIRT3 Human Endogenous Metabolite

In Vitro

Nicotinamide riboside tartrate (0.5 nM; 24 hours) reduces the acetylation status of Ndufa9 and SOD2^[1].

Nicotinamide riboside tartrate increases intracellular and mitochondrial NAD+ content in C2C12, Hepa1.6, and HEK293 cells in a concentration-dependent manner at concentrations ranging from 1-1000 μ M^[1].

Nicotinamide riboside tartrate boosts NAD to restore antiviral poly(ADP-ribose) polymerase (PARP) functions to support innate immunity for coronavirus (CoVs), a cause of COVID-19^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	HEK293T cells
Concentration:	0.5 nM
Incubation Time:	24 hours
Result:	Reduced the acetylation status of Ndufa9 and SOD2.

In Vivo

Chronic Nicotinamide riboside tartrate (p.o.; 400 mg/kg/day; for 16 weeks) supplementation increases plasma and intracellular NAD⁺ content in a tissue-specific manner^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	10-week-old C57Bl/6J mice $^{[1]}$
Dosage:	400 mg/kg
Administration:	PO; daily; for 16 weeks

Result:	Increased plasma and intracellular NAD ⁺ content in a tissue-specific manner.

CUSTOMER VALIDATION

- Nat Commun. 2023 Jan 16;14(1):240.
- Mol Ther. 2022 Sep 21;S1525-0016(22)00567-6.
- Redox Biol. 2022 Oct 11;57:102507.
- Cell Biosci. 2021 Nov 10;11(1):192.
- Cells. 2023 Oct 2, 12(19), 2396.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Cantó C, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012 Jun 6;15(6):838-47.

[2]. Bing Gong, et al. Nicotinamide Riboside Restores Cognition Through an Upregulation of Proliferator-Activated Receptor- γ Coactivator 1α Regulated β -Secretase 1 Degradation and Mitochondrial Gene Expression in Alzheimer's Mouse Models. Neurobiol Aging. 2013 Jun;34(6):1581-8.

[3]. Collin D Heer, et al. Coronavirus and PARP Expression Dysregulate the NAD Metabolome: A Potentially Actionable Component of Innate Immunity. bioRxiv. 2020 Apr 30;2020.04.17.047480.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA