MCE MedChemExpress

Product Data Sheet

Nicotinamide riboside malate

®

Cat. No.:	HY-123033C	
CAS No.:	2415659-01-5	НООН
Molecular Formula:	$C_{15}H_{20}N_2O_{10}$	
Molecular Weight:	388.33	O ^{^wN⁺} NH ₂
Target:	Sirtuin; Endogenous Metabolite	o U
Pathway:	Cell Cycle/DNA Damage; Epigenetics; Metabolic Enzyme/Protease	HO
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	о́н о́

BIOLOGICAL ACTIVITY Description Nicotinamide riboside malate, an orally active NAD ⁺ precursor, increases NAD ⁺ levels and activates SI Nicotinamide riboside malate is a source of vitamin B3 (niacin) and enhances oxidative metabolism, presented the distribution of the distributicon of the distributicon of the distribution of the distrebuticon	protection against high		
IC ₅₀ & Target SIRT1 SIRT3 Human Endogenous Metabolite			
in a concentration-dependent manner at concentrations ranging from 1-1000 μ M ^[1] .	de riboside malate increases intracellular and mitochondrial NAD ⁺ content in C2C12, Hepa1.6, and HEK293 cells itration-dependent manner at concentrations ranging from 1-1000 μM ^[1] . de riboside malate boosts NAD to restore antiviral poly(ADP-ribose) polymerase (PARP) functions to support nunity for coronavirus (CoVs), a cause of COVID-19 ^[3] . ot independently confirmed the accuracy of these methods. They are for reference only. ot Analysis ^[1] HEK293T cells		
Incubation Time: 24 hours			
Result: Reduced the acetylation status of Ndufa9 and SOD2.			
In Vivo Chronic Nicotinamide riboside malate (p.o.; 400 mg/kg/day; for 16 weeks) supplementation increases intracellular NAD ⁺ content in a tissue-specific manner ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	·		
Animal Model: 10-week-old C57Bl/6J mice ^[1]	10-week-old C57Bl/6J mice ^[1]		
Dosage: 400 mg/kg	400 mg/kg		
Administration: PO; daily; for 16 weeks	PO; daily; for 16 weeks		

CUSTOMER VALIDATION

- Nat Commun. 2023 Jan 16;14(1):240.
- Mol Ther. 2022 Sep 21;S1525-0016(22)00567-6.
- Redox Biol. 2022 Oct 11;57:102507.
- Cell Biosci. 2021 Nov 10;11(1):192.
- Cells. 2023 Oct 2, 12(19), 2396.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Cantó C, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012 Jun 6;15(6):838-47.

[2]. Bing Gong, et al. Nicotinamide Riboside Restores Cognition Through an Upregulation of Proliferator-Activated Receptor-γ Coactivator 1α Regulated β-Secretase 1 Degradation and Mitochondrial Gene Expression in Alzheimer's Mouse Models. Neurobiol Aging. 2013 Jun;34(6):1581-8.

[3]. Collin D Heer, et al. Coronavirus and PARP Expression Dysregulate the NAD Metabolome: A Potentially Actionable Component of Innate Immunity. bioRxiv. 2020 Apr 30;2020.04.17.047480.

Caution: Product has not been fully validated for medical applications. For research use only.