Product Data Sheet

Nesbuvir

Cat. No.: HY-14775 CAS No.: 691852-58-1 Molecular Formula: $C_{22}H_{23}FN_{2}O_{5}S$ Molecular Weight: 446.49 Target: HCV

Pathway: Anti-infection

Storage: Powder -20°C 3 years

 $4^{\circ}C$ 2 years

In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 50 \text{ mg/mL} (111.98 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2397 mL	11.1985 mL	22.3969 mL
	5 mM	0.4479 mL	2.2397 mL	4.4794 mL
	10 mM	0.2240 mL	1.1198 mL	2.2397 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.60 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.60 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.60 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Nesbuvir is a nonnucleoside inhibitor of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase.	
IC ₅₀ & Target	EC50: 9 nM (NS3 V170A), 13 nM (NS3 V170A), 15 nM (NS3 K583T), 13 nM (NS5B I424V)[1]	
In Vitro	Replicon cells are treated with 1 mg/mL G418 and combinations of the two compounds. Nesbuvir (HCV-796) is added to 40 or 80 nM (approximately 10 and 20 times the EC ₅₀ in a 3-day replicon inhibition assay, respectively) and Boceprevir is added	

to 400 or 800 nM (approximately 2 and 4 times the EC $_{50}$, respectively). The EC $_{50}$ s for Nesbuvir and Boceprevir for the parental replicon in the transient expression assay are comparable to those obtained in the 3-day inhibition assay with the stable replicon cells; the EC $_{50}$ for Nesbuvir in the transient expression assay is 14 nM, whereas it is 5 nM for the stable replicon; and the EC $_{50}$ for Boceprevir in the transient expression assay is 608 nM, whereas it is 201 nM for the stable replicon^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Among a huge variety of yet characterized nucleoside and non-nucleoside inhibitors (NNI), the benzofurane derivative NNI Nesbuvir (HCV-796) is demonstrated to yield significant antiviral effects in mice with chimeric human livers and in patients infected with HCV. HCV-796 binds to a hydrophobic binding pocket at the "palm" domain of NS5B; however, its mode of inhibition remains to be defined^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

Huh7-BB7 cells are seeded at a density of 20,000 cells per 100 mm dish in DMEM supplemented with 2% FBS, 1 mg/mL G418, and various concentrations of Nesbuvir and/or Boceprevir with DMSO at a final concentration of 0.5% (vol/vol). The medium is removed and is replaced with fresh medium with the appropriate compound concentrations every 3 or 4 days. After 7 days, the cells are split 1 to 10, placed into fresh 100 mm dishes, and incubated with medium with the appropriate compound concentrations. After 20 days, the medium is removed and the cells are fixed with 7% (wt/vol) formaldehyde and stained with 1% (wt/vol) crystal violet in 50% (vol/vol) ethanol^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1922-1927.
- Antiviral Res. 2017 Oct;146:65-75.
- Antiviral Res. 2017 Mar;139:18-24.
- Antimicrob Agents Chemother. 2019 May 24;63(6). pii: e00003-19.
- Antimicrob Agents Chemother. 2014 Dec;58(12):7215-24.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Flint M, et al. Selection and characterization of hepatitis C virus replicons dually resistant to the polymerase and protease inhibitors HCV-796 and boceprevir (SCH 503034). Antimicrob Agents Chemother. 2009 Feb;53(2):401-11.

[2]. Reich S, et al. Mechanisms of activity and inhibition of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem. 2010 Apr 30;285(18):13685-93.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com