Proteins

Product Data Sheet

Naxagolide

Cat. No.: HY-108237 CAS No.: 88058-88-2 Molecular Formula: $C_{15}H_{21}NO_{2}$ Molecular Weight: 247.33

Target: Dopamine Receptor

GPCR/G Protein; Neuronal Signaling Pathway:

Storage: Powder -20°C 3 years

> 4°C 2 years

-80°C In solvent 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 200 mg/mL (808.64 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.0432 mL	20.2159 mL	40.4318 mL
	5 mM	0.8086 mL	4.0432 mL	8.0864 mL
	10 mM	0.4043 mL	2.0216 mL	4.0432 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Naxagolide ((+)-PHNO; Dopazinol) is a potent dopamine D2 (Dopamine Receptor) agonist. Naxagolide has the potential for the research of parkinson's disease (PD) $^{[1][2]}$.
IC ₅₀ & Target	D ₂ Receptor
In Vitro	In vitro, Naxagolide ((+)-PHNO) inhibits binding of [³ H]apomorphine (IC ₅₀ = 23 nM) or [³ H]spiperone (IC ₅₀ = 55 nM) to rat striatal membranes ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	In mice, Naxagolide ((+)-PHNO) produces hypothermia (13 μ g/kg i.p.) and postural asymmetry in the unilaterally caudectomized animal (4 μ g/kg i.p.) ^[1] . In the rat, Naxagolide ((+)-PHNO) produces stereotypy (10 μ g/kg i.p.) and contralateral turning in 6-hydroxydopamine-lesioned animals (5 μ g/kg i.p.) that lasted 1 to 3 hr ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. G E Martin, et al. Pharmacologic profile of a novel potent direct-acting dopamine agonist, (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO]. J Pharmacol Exp Ther. 1984 Sep;230(3):569-76.

[2]. E F Domino, et al. Relative potency and efficacy of some dopamine agonists with varying selectivities for D1 and D2 receptors in MPTP-induced hemiparkinsonian monkeys. J Pharmacol Exp Ther. 1993 Jun;265(3):1387-91.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com