MedChemExpress

NQ301

Cat. No.:	$\mathrm{HY}-101054$	
CAS No.:	$130089-98-4$	
Molecular Formula:	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	
Molecular Weight:	325.75	
Target:	Thrombin	
Pathway:	Metabolic Enzyme/Protease	
Storage:	Powder	$-20^{\circ} \mathrm{C}$
		3 years
		$4^{\circ} \mathrm{C}$
	2 In solvent	$-80^{\circ} \mathrm{C}$
		2 years
		$-20^{\circ} \mathrm{C}$
		1 year

SOLVENT \& SOLUBILITY

In Vitro
DMSO : $\geq 7.14 \mathrm{mg} / \mathrm{mL}$ (21.92 mM)

* " \geq " means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Concentration	1 mg	5 mg	10 mg
	1 mM	3.0698 mL	15.3492 mL	30.6984 mL
	5 mM	0.6140 mL	3.0698 mL	6.1397 mL
	10 mM	0.3070 mL	1.5349 mL	3.0698 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 40\% PEG300 >> 5\% Tween-80 >> 45\% saline Solubility: $0.71 \mathrm{mg} / \mathrm{mL}(2.18 \mathrm{mM})$; Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description \quad QQ301 is an antithrombotic agent; inhibits collagen-challenged rabbit platelet aggregation with an IC_{50} of $10 \mathrm{mg} / \mathrm{mL}$.
$I C_{50}$ \& Target IC50: $0.60 \pm 0.02 \mu \mathrm{M}$ (collagen-challenged rabbit platelet aggregation), $0.58 \pm 0.04 \mu \mathrm{M}$ (U46619-challenged rabbit platelet aggregation), $0.78 \pm 0.04 \mu \mathrm{M}$ (arachidonic acid-challenged rabbit platelet aggregation) ${ }^{[1]}$

In Vitro
NQ301 concentration-dependently inhibits collagen ($10 \mathrm{mg} / \mathrm{mL}$)-, U46619 ($1 \mathrm{mg} / \mathrm{mL}$)- and arachidonic acid ($100 \mathrm{mg} / \mathrm{mL}$)challenged rabbit platelet aggregation, with IC_{50} values of $0.60 \pm 0.02,0.58 \pm 0.04$ and $0.78 \pm 0.04 \mu \mathrm{M}$, respectively. NQ301 potently suppresses thromboxane B_{2} formation by platelets that are exposed to arachidonic acid in a concentrationdependent manner, but had no effect on the production of prostaglandin D_{2}, indicating an inhibitory effect on thromboxane A_{2} synthase. NQ301 has a potential to inhibit thromboxane A_{2} synthase activity with thromboxane $A_{2} /$ prostaglandin H_{2} receptor blockade, and modulate arachidonic acid liberation as well as 12-hydroxy-5,8,10,14-eicosatetraenoic acid
formation in platelets ${ }^{[1]}$. NQ301 inhibits platelet aggregation by suppression of the intracellular pathway, rather than by direct inhibition of fibrinogen-GPIIb/IIla complex binding. NQ301 significantly inhibits the increase of cytosolic Ca^{2+} concentration and ATP secretion, and also significantly increases platelet cAMP levels in the activated platelets. The antiplatelet activity of NQ301 may be mediated by inhibition of cytosolic Ca^{2+} mobilization, enhancement of cAMP production and inhibition of ATP secretion in activated platelets ${ }^{[2]}$.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay ${ }^{[1]}$

ished rabbit platelet suspension is challenged by addition of collagen ($10 \mathrm{mg} / \mathrm{mL}$), arachidonic acid ($100 \mu \mathrm{M}$) or U46619 (1μ M). Concentration- response relationship is determined in the absence or presence of a range of concentrations of NQ301 (0 , $0.25,0.5,0.75,1 \mu \mathrm{M}$); aspirin-treated platelets ($50 \mu \mathrm{M}$ for 5 min) are used to prevent any possible contribution of endogenous arachidonic acid metabolites to platelet aggregation. The resulting aggregation, measured as the change in light transmission, is recorded for 5 min . The extent of platelet aggregation is expressed as $\%$ of the control ${ }^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Jin YR, et al. An antithrombotic agent, NQ301, inhibits thromboxane A2 receptor and synthase activity in rabbit platelets. Basic Clin Pharmacol Toxicol. 2005 Sep;97(3):162-7.
[2]. Zhang YH, et al. Antiplatelet effect of 2-chloro-3-(4-acetophenyl)-amino-1,4-naphthoquinone (NQ301): a possible mechanism through inhibition of intracellular Ca2+ mobilization. Biol Pharm Bull. 2001 Jun;24(6):618-22.

Caution: Product has not been fully validated for medical applications. For research use only

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

