NF-56-EJ40

Cat. No.: HY-130246 CAS No.: 2380230-73-7 Molecular Formula: $C_{27}H_{29}N_3O_3$ Molecular Weight: 443.54

Target: Succinate Receptor 1 Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

2 years

In solvent -80°C 1 year

> -20°C 6 months

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 5 mg/mL (11.27 mM; Need ultrasonic)

H₂O: 4.55 mg/mL (10.26 mM; ultrasonic and adjust pH to 9 with NaOH)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2546 mL	11.2729 mL	22.5459 mL
	5 mM	0.4509 mL	2.2546 mL	4.5092 mL
	10 mM	0.2255 mL	1.1273 mL	2.2546 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

NF-56-EJ40 is a potent, high-affinity, and highly selective human SUCNR1 (GPR91) antagonist with an IC $_{50}$ of 25 nM and a $_{6}$ Ki $_{10}$ NF-56-EJ40 is a potent, high-affinity, and highly selective human SUCNR1 (GPR91) antagonist with an IC $_{50}$ of 25 nM and a Ki $_{10}$ NF-56-EJ40 is a potent, high-affinity, and highly selective human SUCNR1 (GPR91) antagonist with an IC $_{50}$ of 25 nM and a Ki $_{10}$ NF-56-EJ40 is a potent, high-affinity, and highly selective human SUCNR1 (GPR91) antagonist with an IC $_{50}$ of 25 nM and a Ki $_{10}$ NF-56-EJ40 is a potent, high-affinity, and highly selective human SUCNR1 (GPR91) antagonist with an IC $_{50}$ of 25 nM and a Ki $_{10}$ NF-56-EJ40 is a potent, high-affinity, and highly selective human SUCNR1 (GPR91) antagonist with an IC $_{50}$ of 25 nM and a Ki $_{10}$ NF-56-EJ40 is a potential with the selective human SUCNR1 (GPR91) antagonist with an IC $_{50}$ of 25 nM and a Ki $_{10}$ NF-56-EJ40 is a potential with the selective human SUCNR1 (GPR91) antagonist with an IC $_{50}$ of 25 nM and 25 of 33 nM, and shows almost no activity towards rat SUCNR1. NF-56-EJ40 has high affinity for humanized rat SUCNR1 with a K i value of 17.4 nM^[1].

IC₅₀ & Target

SUCNR1 (GPR91)[1]

In Vitro

NF-56-EJ40 is bound deep inside the hydrophobic pocket, with the acid group coordinated by the hydroxyl groups of the conserved residues $Y83^{2.64}$ and $Y30^{1.39}$ on one side, and $R281^{7.39}$ on the other side. The conserved $E18^{1.27}$ is predicted to form an additional hydrogen bond to the piperazine ring of NF-56-EJ40. E22^{1.31} and N274^{7.32} in human SUCNR1 are replaced by K181.31 and K269^{7.32} in rat SUCNR1. These two amino acid exchanges could prevent the binding of NF-56-EJ40 to rat SUCNR1 owing to steric hindrance. Radioligand-binding studies with human SUCNR1 showed partial agreement with our homology model: the Y30^{1.39}F mutant of human SUCNR1, shows reduced binding of NF-56-EJ40. Similar effects are observed with the E18^{1.27}K and E18^{1.27}R mutants, probably owing to steric clashes of the Lys and Arg residues with NF-56-EJ40 and the loss of a hydrogen bond to its piperazine ring $^{[1]}$.

?Human SUCNR1 residues are introduced into rat SUCNR1 to form the double mutant K18 $^{1.31}$ E/K269 $^{7.32}$ N (hereafter denoted humanized rat SUCNR1) (K_i of 17.4 nM and 33.5 nM for human and humanized rat SUCNR1, respectively). NF-56-EJ40 increases the thermal stability of both humanized rat SUCNR1 and human SUCNR1, but not that of rat SUCNR1 $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Dev Cell. 2022 Sep 8;S1534-5807(22)00596-2.
- Metabolism. 2023 Jun 12;155630.
- Cancer Lett. 2021 Nov 20;S0304-3835(21)00591-7.
- bioRxiv. January 10, 2022.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Haffke M, et al. Structural basis of species-selective antagonist binding to the succinate receptor. Nature. 2019 Oct;574(7779):581-585.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA