Product Data Sheet

N-(p-amylcinnamoyl) Anthranilic Acid

Cat. No.: HY-118628 CAS No.: 110683-10-8 Molecular Formula: $C_{21}H_{23}NO_{3}$ Molecular Weight: 337.41

Phospholipase; TRP Channel Target:

Pathway: Metabolic Enzyme/Protease; Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (740.94 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.9638 mL	14.8188 mL	29.6375 mL
	5 mM	0.5928 mL	2.9638 mL	5.9275 mL
	10 mM	0.2964 mL	1.4819 mL	2.9638 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.16 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.16 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	N-(p-amylcinnamoyl) Anthranilic Acid (ACA) is a broad spectrum Phospholipase A_2 (PLA ₂) inhibitor and TRP channel blocker $^{[1][2]}$. N-(p-amylcinnamoyl) Anthranilic Acid (ACA) is also an effective reversible inhibitor of calcium-activated chloride channels, has potential to treat arrhythmia $^{[3]}$.
IC ₅₀ & Target	$\label{eq:pla2} \text{PLA}_2^{[1][2]}.$ $\text{TRP channel}^{[1][2]}. \text{Calcium-activated chloride channels}^{[3]}.$
In Vitro	N-(p-amylcinnamoyl) Anthranilic Acid (ACA; 20 μ M) completely blocks ADPR-induced whole-cell currents and H ₂ O ₂ -induced Ca ²⁺ signals (IC ₅₀ =1.7 μ M) in HEK293cells transfected with human TRPM2 ^[1] . N-(p-amylcinnamoyl) Anthranilic Acid (ACA; 20 μ M) also blocks currents through human TRPM8 and TRPC6 expressed in

HEK293 cells^[1].

N-(p-amylcinnamoyl) Anthranilic Acid (ACA) modulates the activity of different TRP channels independent of PLA2₂ inhibition^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Int J Clin Exp Med. 2023 Jun 1.
- Oxid Med Cell Longev. 2021 Jul 27;2021:7356266.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Kraft R, et al. Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol. 2006 Jun;148(3):264-73.

[2]. Harteneck C, et al. N-(p-amylcinnamoyl)anthranilic acid (ACA): a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc Drug Rev. 2007 Spring;25(1):61-75.

[3]. Gwanyanya A, et al. Inhibition of the calcium-activated chloride current in cardiac ventricular myocytes by N-(p-amylcinnamoyl)anthranilic acid (ACA). Biochem Biophys Res Commun. 2010 Nov 19;402(3):531-6.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com