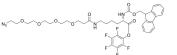


Product Data Sheet

N-Fmoc-N'-(azido-PEG4)-L-Lysine-PFP ester

Cat. No.: HY-140847 Molecular Formula: $C_{38}H_{42}F_5N_5O_9$


Molecular Weight: 807.76

Target: PROTAC Linkers

Pathway: PROTAC

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	N-Fmoc-N'-(azido-PEG4)-L-Lysine-PFP ester is an alkyl/ether and PEG-based PROTAC linker that can be used in the synthesis of PROTACs ^[1] . N-Fmoc-N'-(azido-PEG4)-L-Lysine-PFP ester is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. Strain-promoted alkyne-azide cycloaddition (SPAAC) can also occur with molecules containing DBCO or BCN groups.	
IC ₅₀ & Target	Alkyl/ether	PEGs
In Vitro	PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

REFERENCES

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

 ${\tt Address: 1\ Deer\ Park\ Dr, Suite\ Q, Monmouth\ Junction, NJ\ 08852, USA}$

Inhibitors