

Product Data Sheet

Mps1-IN-2

Molecular Formula:

Cat. No.: HY-13994 **CAS No.:** 1228817-38-6

Molecular Weight: 480.6

Target: Mps1; Polo-like Kinase (PLK)

Pathway: Cell Cycle/DNA Damage; Cytoskeleton

 $C_{26}H_{36}N_{6}O_{3}$

Storage: Powder -20°C

4°C 2 years

3 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 13.33 mg/mL (27.74 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	2.0807 mL	10.4037 mL	20.8073 mL	
	5 mM	0.4161 mL	2.0807 mL	4.1615 mL	
	10 mM	0.2081 mL	1.0404 mL	2.0807 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.33 mg/mL (2.77 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 1.33 mg/mL (2.77 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.33 mg/mL (2.77 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Mps1-IN-2 is a potent, selective and ATP-competitive dual Mps1/Plk1 inhibitor, with an IC₅₀ and a K_d of 145 nM and 12 nM for Mps1 and a K_d of 61 nM for Plk1.

 IC₅₀ & Target
 Mps1
 GAK
 PLK1
 PLK3

 12 nM (Kd)
 140 nM (Kd)
 61 nM (Kd)
 1600 nM (Kd)

PLK4 STK33 3100 nM (Kd) 5000 nM (Kd) In Vitro

Mps1-IN-2 is a potent, selective and ATP-competitive Mps1 kinase inhibitor, with an IC $_{50}$ and a K $_{d}$ of 145 nM and 12 nM. Mps1-IN-2 also shows high affinity for PLK1 and GAK with K $_{d}$ s of 61 and 140 nM, respectively, but shows little or no inhibition on other 352 member kinases. Mps1-IN-2 can induces bypass of a checkpoint-mediated mitotic arrest in U2OS cells^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

The kinase binding assay is used to assess compound binding to TTK by monitoring displacement of a fluorescently labeled, ATP site-directed kinase inhibitor (Kinase Tracer 236) from the kinase active site. Each 15 μ L assay contains 5 nM TTK, variable amounts of test compound (Mps1-IN-2), 30 nM Kinase Tracer 236, 2 nM Eu-anti-GST Antibody, and 1% DMSO (residual from compound dilution) in Kinase Buffer A (50 mM HEPES pH 7.5, 10 mM MgCl₂, 1 mM EGTA, 0.01% Brij-35). Binding assays are initiated by addition of 5 μ L of test compound (from 2-fold dilution series) to 5 μ L of a kinase/antibody mixture, followed by addition of 5 μ L of antibody. Assay plates are read using using standard Eu-based TR-FRET settings with excitation at 340 nm and emission monitored at 615 nm (donor) and 665 nm (acceptor). Emission intensities are measured over a 200 μ s window following a 100 μ s post-excitation delay^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

R	_	_	_		_	ь і		_	_
\sim	ь.	ь.	-	w	-	N		ь.	۰,
11	_		_	11	_	ıv	~	_	J

[1]. Kwiatkowski N, et al. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol. 2010 May;6(5):359-68.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA