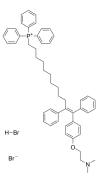
Proteins

Inhibitors

Product Data Sheet

MitoTam bromide, hydrobromide

Cat. No.: HY-126222 CAS No.: 1634624-73-9 C₅₂H₆₀Br₂NOP Molecular Formula:


905.82 Molecular Weight:

Target: Apoptosis; Mitochondrial Metabolism Pathway: Apoptosis; Metabolic Enzyme/Protease

4°C, stored under nitrogen, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (stored under nitrogen, away from

moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 240 mg/mL (264.95 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.1040 mL	5.5199 mL	11.0397 mL
	5 mM	0.2208 mL	1.1040 mL	2.2079 mL
	10 mM	0.1104 mL	0.5520 mL	1.1040 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

MitoTam bromide, hydrobromide, a Tamoxifen derivative^[1], is an electron transport chain (ETC) inhibitor. MitoTam bromide, hydrobromide reduces mitochondrial membrane potential in senescent cells and affects mitochondrial morphology^[2]. MitoTam bromide, hydrobromide is an effective anticancer agent, suppresses respiratory complexes (CIrespiration) and disrupts respiratory supercomplexes (SCs) formation in breast cancer cells^{[1][2]}.

In Vitro

MitoTam (0.5 μ M-56 μ M; 24 hours) kills breast cancer cell Lines and nonmalignant cells with an IC₅₀ range from 0.65 μ M to 55.9 μ M^[1].

MitoTam (2.5 µM; 2-24 hours) results in stronger activation of the apoptotic pathway in MCF7 Her2 high cells compared with mock MCF7 cells^[1].

 $Mito Tam~(0.05~\mu M-1~\mu M; 3~days)~causes~a~concentration-dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~there~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~there~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~there~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~there~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~there~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~there~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~there~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~there~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~dependent~induction~of~apoptosis~in~breast~cancer~cells,~while~dependent~in~breast~cancer~cells~cancer~cancer~cells~cancer~cells~cancer~cells~cancer~cells~cancer~cells~can$ was no effect for non-malignant breast epithelial cells^[2]

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Breast Cancer Cell Lines: BT474, MCF7, MCF7 Her2high, MCF7 Her2low, MDA-MB-231, MDA-Cell Line:

	MB-436, MDA-MB-453, SK-BR-3, T47D; NeuTL cells; Nonmalignant Cells: A014578, H9c2 cells	
Concentration:	0.5 μΜ-56 μΜ	
Incubation Time:	24 hours	
Result:	Killed breast cancer cells MCF7, MCF7 Her2 $^{high},$ MCF7 Her2 low with IC $_{50}$ values of 1.25 $\mu M,$ 0.65 μM and 1.45 μM respectively.	
Western Blot Analysis ^[1]		
Cell Line:	MCF7 mock cells, MCF7 Her2 ^{high} cells	
Concentration:	2.5 μΜ	
Incubation Time:	2 hours, 4 hours, 8 hours, 16 hours, 24 hours	
Result:	Revealed accelerated cleavage of procaspase-9, Parp1/2 and proapoptotic Bax, decreased the antiapoptotic Bcl-2 protein in Her2high cells.	
Apoptosis Analysis ^[2]		
Cell Line:	MCF-7 cells, 4T1 cells and MCF-10a cells	
Concentration:	0.05 μΜ-1 μΜ	
Incubation Time:	3 days	
Result:	Resulted in apoptosis in MCF7 and 4T1 cells.	

In Vivo

MitoTam (intraperitoneal injection; $2 \mu g/g$; once a week; 4 weeks) decreases β -gal staining of lungs from MitoTam-treated mice, accompaning by a inhibition in the expression of senescence markers p16Ink4a, p21waf1 and PAI comparing control mice sup>[2].

MitoTam (intraperitoneal injection; 0.54 μ mol/mouse; twice a week; 2 weeks) inhibits growth of syngeneic tumors by $80\%^{[1]}$. MitoTam (intraperitoneal injection; 0.25 μ mol/mouse; twice a week; 2 weeks) slows down the growth of MCF7 mock tumors and stops tumor progression after two doses; suppresses Her2^{high} carcinomas decreased threefold from the original size with complete disappearance^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	18-month-old or 2-month-old FVB/N mice ^[2]	
Dosage:	2 μg/g	
Administration:	Intraperitoneal injection; 2 μg/g; once a week; 4 weeks	
Result:	Eliminated senescent cells also in vivo.	
Animal Model:	FVB/N c-neu mouse ^[1]	
Dosage:	0.54 μmol/mouse	
Administration:	Intraperitoneal injection; 0.54 μmol/mouse; twice a week; 2 weeks	
Result:	Suppressed Her2 ^{high} breast carcinomas.	

Page 2 of 3 www.MedChemExpress.com

Animal Model:	Balb/c nude mice with MCF7 mock or MCF7 Her2 ^{high} cells ^[1]	
Dosage:	0.25 μmol/mouse/dose	
Administration:	Intraperitoneal injection; 0.25 μmol/mouse/dose; twice a week; 2 weeks	
Result:	Prevented reaching the ethical endpoint in all situations, slowed down the growth of MCF mock tumors and suppressed Her2 ^{high} carcinomas decreased.	

REFERENCES

[1]. Rohlenova K, et al. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2highBreast Cancer. Antioxid Redox Signal. 2017 Jan 10;26(2):84-103.

[2]. Hubackova S, et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019 Jan;26(2):276-290.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA