Proteins

Product Data Sheet

Methylstat

Cat. No.: HY-15221 CAS No.: 1310877-95-2 Molecular Formula: $C_{28}H_{31}N_3O_6$ 505.56 Molecular Weight:

Target: Apoptosis; Histone Demethylase; MDM-2/p53

Pathway: Apoptosis; Epigenetics 4°C, protect from light Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (197.80 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	1.9780 mL	9.8900 mL	19.7800 mL	
	5 mM	0.3956 mL	1.9780 mL	3.9560 mL	
	10 mM	0.1978 mL	0.9890 mL	1.9780 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.95 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Methylstat is a potent histone demethylases inhibitor. Methylstat shows anti-proliferative activity with low cytotoxicity. Methylstat induces apoptosis and cell cycle arrest at G0/G1 phase. Methylstat increases the expression of p53 and p21 protein levels. Methylstat inhibits angiogenesis induced by various cytokines. Methylstat can be used as a chemical probe for addressing its role in angiogenesis^{[1][2]}.

In Vitro

Methylstat (0-5 μ M; 48, 72 h) shows anti-proliferative activity with no cytotoxicity on HUVECs at 1-2 μ M^[1]. Methylstat (0, 1, 2 μM; 48 h) induces cell cycle arrest at G0/G1 phase in a dose-dependent manner^[1]. Methylstat (0, 1, 2 μ M; 48 h) increases the expression of p53 mRNA levels, the H3K27 methylation levels and the accumulation of p53 and p21 protein levels, but suppresses the protein level of cyclinD1 $^{[1]}$.

Methylstat $(0, 1, 2 \mu M)$ shows anti-angiogenic activity induced by VEGF, bFGF and TNF- α in HUVEC cells, and inhibits the f capillary formation during CAM (chick embryo chorioallantoic membrane) development without any sign of thrombosis and hemorrhage^[1].

Methylstat (1.1, 2.2 mM for U266 cells, 2.1, 4.2 mM for ARH77 cells; 72 h) induces apoptosis significantly in U266 and ARH77 cells^[2].

Cell Line:	HUVEC cells			
Concentration:	0-5 μΜ			
Incubation Time:	48, 72 h			
Result:	Did not exhibit cytotoxicity on HUVECs at 1-2 μM.			
Cell Viability Assay ^[1]				
Cell Line:	HUVEC, HepG2, HeLa, CHANG cells			
Concentration:	0-5 μΜ			
Incubation Time:	72 h			
Result:	Showed anti-proliferative activity with IC $_{50} s$ of 4, 10, 5, 7.5 μM for HUVEC, HepG2, HeLa, CHANG cells, respectively.			
Cell Cycle Analysis ^[1]				
Cell Line:	HUVEC cells			
Concentration:	0, 1, 2 μΜ			
Incubation Time:	48 h			
Result:	G0/G1 phase increased 16.8% compared to non-treated cells, whereas S and G2/M decreased 5.5% and 6.1% respectively.			
Western Blot Analysis ^[1]				
Cell Line:	HUVEC cells			
Concentration:	0, 1, 2 μΜ			
Incubation Time:	0-48 h			
Result:	Resulted in accumulation of p53 and p21 protein levels in a time- and dose-dependent manner and increased the H3K27 methylation levels, the but suppressed the protein level of cyclinD1.			
Apoptosis Analysis ^[2]				
Cell Line:	U266, ARH77 cells			
Concentration:	1.1, 2.2 mM for U266 cells, 2.1, 4.2 mM for ARH77 cells			
Incubation Time:	72 h			
Result:	Induced apoptosis in U266, ARH77 cells.			

REFERENCES

 $[1]. Yumi\ Cho, et\ al.\ A\ histone\ demethylase\ inhibitor,\ methylstat,\ inhibits\ angiogenesis\ in\ vitro\ and\ in\ vivo.\ RSC\ Advances,\ 2014.$

2]. Kacı FN, et al. Synergistic A	poptotic Effects of Bortezomib	and Methylstat on Multiple M	yeloma Cells. Arch Med Res. 2020 /	Apr;51(3):187-193.	
			nedical applications. For resear		
	Tel: 609-228-6898	Fax: 609-228-5909 Deer Park Dr. Suite O. Monm	E-mail: tech@MedChem nouth Junction, NJ 08852, USA	Express.com	
	71000.00012.2	2001 - 4111 21, 04110 2, 1101111	,,		

Page 3 of 3 www.MedChemExpress.com