
Proteins

MMT5-14

Cat. No.: HY-151265 CAS No.: 2719679-31-7 Molecular Formula: C₃₉H₅₅N₆O₈P Molecular Weight: 766.86 SARS-CoV Target: Pathway: Anti-infection

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description

MMT5-14 is a remdesivir analogue with a higher antiviral activity in four variants of SARS-CoV-2 than Remdesivir (HY-104077). MMT5-14 inhibits SARS-CoV-2, α , β , γ and δ variants with EC₅₀s of 0.4, 2.5, 15.9, 1.7 and 5.6 μ M, respectively. MMT5-14 can be used for the research of COVID-19^[1].

In Vitro

MMT5-14 (10 μ M; 0-12 h) increases epithelial cell uptake^[1].

MMT5-14 (5 μ M; 2 d) shows a better in vitro antiviral activity than remdesivir^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	Vero-E6 cell line
Concentration:	5 μΜ
Incubation Time:	2 days
Result:	Inhibited SARS-CoV-2, alpha, beta, gamma and delta variants with EC $_{50} s$ of 0.4, 2.5, 15.9, 1.7 and 5.6 μM , respectively.

In Vivo

MMT5-14 (10 mg/kg; i.v. once) shows a higher stability than remdesivir in microsomes, and shows higher concentrations of prodrugs and active metabolites (NTP) in blood and lungs[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Catheterized female hamsters $^{[1]}$
Dosage:	10 mg/kg
Administration:	Intravenous injection; 10 mg/kg once
Result:	Showed higher intact prodrugs concentration than remdesivir in lungs after 4 hours injection, increased tissue exposure in most of the tissues and showed 5- to 10-fold higher tissue selectivity in lungs compared to remdesivir.

REFERENCES
[1]. Hu H, et al. Optimization of the Prodrug Moiety of Remdesivir to Improve Lung Exposure/Selectivity and Enhance Anti-SARS-CoV-2 Activity. J Med Chem. 2022 Sep 7.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com