Proteins

MMG-11 quarterhydrate

Cat. No.: HY-112146A Molecular Formula: $C_{15}H_{14}O_{7}\cdot 1/4H_{2}O$

310.78 Molecular Weight:

Toll-like Receptor (TLR) Target: Pathway: Immunology/Inflammation

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 6 months

> -20°C 1 month

1/4 H₂O

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (321.77 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.2177 mL	16.0886 mL	32.1771 mL
	5 mM	0.6435 mL	3.2177 mL	6.4354 mL
	10 mM	0.3218 mL	1.6089 mL	3.2177 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (8.04 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.04 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.69 mM); Clear solution

BIOLOGICAL ACTIVITY

Description MMG-11 quarterhydrate is a potent and selective human TLR2 antagonist with low cytotoxicity. MMG-11 quarterhydrate inhibits both TLR2/1 and TLR2/6 signaling with IC $_{50}$ S of 1.7 μ M for Pam $_3$ CSK $_4$ -induced hTLR2/1 and 5.7 μ M for Pam $_2$ CSK $_4$ -induced hTLR2/1 and 5.7 μ M for Pam induced hTLR2/6 responses^[1].

IC₅₀ & Target

TLR2

In Vitro

MMG-11 neither shows cellular toxicity nor interference with signaling induced by other TLR agonists, IL-1β or TNF. MMG-11 (0.01-100 μM) shows no cytotoxic effects up to 100 μM in peripheral blood mononuclear cells (PBMCs)^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cytotoxicity Assay ^{[1}		
Cell Line:	PBMCs	
Concentration:	0.01, 1, 10, 100 μM	
Incubation Time:		
Result:	Showed no cytotoxic effects up to 100 μM.	

CUSTOMER VALIDATION

- Cell Commun Signal. 2023 May 1;21(1):86.
- Mol Immunol. 2021 Feb;130:85-95.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Grabowski M, et al. Identification of a pyrogallol derivative as a potent and selective human TLR2 antagonist by structure-based virtual screening. Biochem Pharmacol. 2018 Aug;154:148-160.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA