

Product Data Sheet

ML213

Cat. No.: HY-101843 CAS No.: 489402-47-3 Molecular Formula: $C_{17}H_{23}NO$ Molecular Weight: 257.37

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 36.67 mg/mL (142.48 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.8855 mL	19.4273 mL	38.8546 mL
	5 mM	0.7771 mL	3.8855 mL	7.7709 mL
	10 mM	0.3885 mL	1.9427 mL	3.8855 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.75 mg/mL (10.69 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.75 mg/mL (10.69 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.75 mg/mL (10.69 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	ML213 is a selective activator of Kv7.2 and Kv7.4 channels, enhances Kv7.2 and Kv7.4 channels with EC $_{50}$ s of 230 and 510 nM, respectively.
IC ₅₀ & Target	EC50: 230 nM (Kv7.2 channel), 510 nM (Kv7.4 channel) ^{[2][3]}
In Vitro	ML213 (100 nM-30 μ M) increases maximal conductance to a peak at 212% \pm 27% of control, with an EC ₅₀ of 0.8 \pm 0.3 μ M. ML213 (10 μ M) reduces the deactivation rates of Kv7.4 currents by 4.6-fold in the voltage range from $-$ 130 mV to $-$ 90 mV.

ML213 is a potent and effective activator of homomeric Kv7.5 channels overexpressed in A7r5 cells. ML213 increases maximal conductance of Kv7.5 channels with an EC $_{50}$ of 0.7 \pm 0.2 μ M. ML213 (10 μ M) also reduces deactivation rates of Kv7.5 currents by 5.9-fold on average. ML213 produces similar effects on heteromeric Kv7.4/7.5 channels: 204% \pm 11% maximal increase in conductance with an EC $_{50}$ of 1.1 \pm 0.6 μ M and a 34.2 \pm 3.3 mV maximal negative shift of the activation curve, with an EC $_{50}$ of 3.8 \pm 1.2 μ M^[1]. ML213 causes a vasorelaxation in different precontracted rat blood vessels. ML213 (10 μ M) also hyperpolarizes mesenteric artery smooth muscle cells^[2]. ML213 causes a concentration-dependent shift in the V1/2 for KCNQ2 activation with an EC $_{50}$ 340 \pm 70 nM and a maximal shift of 37.4 mV^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Brueggemann LI, et al. Differential activation of vascular smooth muscle Kv7.4, Kv7.5, and Kv7.4/7.5 channels by ML213 and ICA-069673. Mol Pharmacol. 2014 Sep;86(3):330-41.

[2]. Jepps TA, et al. Vasorelaxant effects of novel Kv 7.4 channel enhancers ML213 and NS15370. Br J Pharmacol. 2014 Oct;171(19):4413-24.

[3]. Yu H, et al. Discovery, Synthesis, and Structure Activity Relationship of a Series of N-Aryl- bicyclo[2.2.1]heptane-2-carboxamides: Characterization of ML213 as a Novel KCNQ2 and KCNQ4 Potassium Channel Opener. ACS Chem Neurosci. 2011 Oct 19;2(10):572-577

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA