Proteins

MK-3328

Cat. No.: HY-100275 CAS No.: 1201323-97-8 Molecular Formula: $C_{14}H_{9}FN_{4}O$ Molecular Weight: 268.25

Target: Amyloid-β

Pathway: **Neuronal Signaling**

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

	_N	/N
	<i>></i>	$-\!\!\!/\!\!\!/ \bigvee_{N}$
F/N/	^o´	\ <u></u>
1 11		

Product Data Sheet

BIOLOGICAL ACTIVITY

Description	MK-3328 is a β -Amyloid PET ligand, which exhibits high binding potency with an IC $_{50}$ of 10.5 nM $^{[1][2]}$.
IC ₅₀ & Target	IC50: 10.5 nM (β-Amyloid) ^[1]
In Vitro	MK-3328 exhibits amyloid binding potency balanced with low levels of nonspecific binding $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	In vivo, [¹⁸ F]MK-3328 demonstrates favorable kinetics, exhibiting high brain uptake and good washout in normal rhesus monkey positron emission tomography (PET) imaging studies ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

[³H]-DMAB is synthesized at a specific activity of ~80 Ci/mmol. The final concentration of radioligand for tissue homogenate binding assay is 1.5nM. Brain homogenates are diluted with PBS to 0.4 mg/mL from original 10 mg/mL volume and 200 μL is used in assay for a final concentration of 50 μ g/assay tube. Unlabeled test compounds are dissolved in DMSO at 1 mM. Dilution of test compound (e.g., MK-3328) to various concentrations is made with PBS containing 2% DMSO. Total binding is defined in the absence of competing compound, and non-displaceable binding is determined in the presence of 1 µM unlabeled self block. Compound dilutions (10×) are added into the assay tube (25 μ L each/per tube, separately) containing 200 µL brain homogenate dilution, and the tubes are pre-incubated at room temperature for 10 minutes. Then radioligand dilutions (10×) are added into the assay tube (25 µL each/per tube, separately) to a final volume of 250 µL per tube. Incubation is carried out at room temperature (25°C) for 90 minutes, and then the assay samples are filtered onto GF/C filters using Skatron 12 well harvester, washing on setting 5-5-5 (~ 3×2 mL) ice cold buffer (PBS, pH 7.4). GF/C filter papers for the Skatron harvester are pre-soaked in 0.1% BSA for 1 hour at room temperature before use. Filters are punched into scintillation vials and counted in 2 mL Ultima Gold on Perkin Elmer Tri-Carb 2900TR for 1 minute. The data analysis is done with Prism software. All assays are done in triplicate, and in the laboratory designated for studies using human tissues^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Hostetler ED, et al. [18F]Fluor Nov;38(8):1193-203.	oazabenzoxazoles as poter	ntial amyloid plaque PET tracer	s: synthesis and in vivo evaluat	ion in rhesus monkey. Nucl Med Biol. 2	011	
[2]. Harrison ST, et al. Synthesis and Evaluation of 5-Fluoro-2-aryloxazolo[5,4-b]pyridines as β-Amyloid PET Ligands and Identification of MK-3328. ACS Med Chem Lett. 2011 Apr 18;2(7):498-502.						
			nedical applications. For res			
	Tel: 609-228-6898 Address: 1	Fax: 609-228-5909 Deer Park Dr, Suite Q, Monm	E-mail: tech@MedCho nouth Junction, NJ 08852, US			

Page 2 of 2 www.MedChemExpress.com