

Product Data Sheet

MAP4343

Cat. No.:HY-107116CAS No.:511-26-2Molecular Formula: $C_{22}H_{34}O_2$ Molecular Weight:330.5

Target: Microtubule/Tubulin

Pathway: Cell Cycle/DNA Damage; Cytoskeleton

Storage: Powder -20°C

4°C 2 years

3 years

In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (75.64 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0257 mL	15.1286 mL	30.2572 mL
	5 mM	0.6051 mL	3.0257 mL	6.0514 mL
	10 mM	0.3026 mL	1.5129 mL	3.0257 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (7.56 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.56 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	MAP4343 is the 3-methylether derivative of Pregnenolone. MAP4343 binds in vitro to microtubule-associated protein 2 (MAP2), stimulates the polymerization of tubulin, enhances the extension of neurites and protects neurons against neurotoxic agents ^{[1][2]} .
In Vitro	MAP4343 (40 μ M; 15 or 30 min) stimulates microtubule polymerization in vitro ^[1] . MAP4343 (30 μ M; 2-8 d) stimulates nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells ^[1] . MAP4343 (20 μ M; 1 h) protects against microtubule depolymerization induced by Nocodazole in PC12 cells ^[1] MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	MAP4343 (12 mg/kg; daily s.c. for 28 d) improves the recovery of locomotor function after spinal cord injury (SCI) in rats $^{[2]}$.

MAP4343 (4 mg/kg; daily s.c. for 6 d) increases MAP2 levels in spinal cord after SCI in rats^[2].

MAP4343 (4 mg/kg; daily s.c. for 6 d) increases the size of lumbar spinal motoneurons' dendrite arbours after SCI in rats^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Adult Sprague-Dawley male rats with spinal cord injury ^[2]	
Dosage:	12 mg/kg	
Administration:	Daily s.c. for 28 days	
Result:	Increased the number of animals able to walk with weight-supported plantar steps. Showed forelimb-hindlimb coordination at the end of the study.	

REFERENCES

- [1]. Fontaine-Lenoir V, et, al. Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4711-6.
- $[2]. \ Duchossoy\ Y,\ et,\ al.\ Treatment\ of\ experimental\ spinal\ cord\ injury\ with\ 3\beta-methoxy-pregnenolone.\ Brain\ Res.\ 2011\ Jul\ 27;1403:57-66.$

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA