Proteins

Screening Libraries

Product Data Sheet

MAO-IN-M30 dihydrochloride

Cat. No.: HY-131036 CAS No.: 64821-19-8 Molecular Formula: $C_{14}H_{16}Cl_2N_2O$

Molecular Weight: 299.2

Target: Monoamine Oxidase Pathway: **Neuronal Signaling**

-20°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 2 mg/mL (6.68 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.3422 mL	16.7112 mL	33.4225 mL
	5 mM	0.6684 mL	3.3422 mL	6.6845 mL
	10 mM			

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

MAO-IN-M30 dihydrochloride is an orally active, brain-permeable, and brain selective irreversible MAO-A (IC_{50} =37 nM) and MAO-B (IC₅₀=57 nM) inhibitor. MAO-IN-M30 dihydrochloride is a potent iron chelator and radical scavenger. MAO-IN-M30 dihydrochloride has a neuroprotective effect against Dexamethasone-induced brain cell apoptosis. MAO-IN-M30 MAO-IN-M30 (dihydrochloride) is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

IC₅₀ & Target MAO-A МАО-В 37 nM (IC₅₀) 57 nM (IC₅₀)

In Vitro

MAO-IN-M30 (0.25 nM; 72 hours) significantly increased cell viability to ~90% after exposure to Dexamethasone^[3].

MAO-IN-M30 (0-10 μM; 24 hours) enhances PC12 cell survival^[4].

MAO-IN-M30 treatment significantly decreases the occurrence of fragmented DNA compared to the dexamethasone-treated group in SH-SY5Y cells^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[3]

	Cell Line:	SH-SY5Y cells		
	Concentration:	0.25 nM		
	Incubation Time:	72 hours		
	Result:	Significantly increased cell viability to 🛮 90% after exposure to Dexamethasone.		
	Cell Viability Assay ^[4]	Cell Viability Assay ^[4]		
	Cell Line:	PC12 cells		
	Concentration:	0-10 μΜ		
	Incubation Time:	24 hours		
	Result:	Enhanced the PC12 cell viability, the cell viability increasing to 85 ± 6 and $90\pm7\%$.		
In Vivo		MAO-IN-M30 (0.5-2.5 mg/kg; p.o.; once daily for 14 consecutive days) possesses neuroprotective activities ^[6] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Male C57/BL mice (20-22 g; MPTP-induced neurotoxicity in mice) ^[6]		
	Dosage:	0.5, 2.5 mg/kg		
	Administration:	P.o.; once daily for 14 consecutive days		
	Result:	Significantly elevate striatal dopamine levels, reduce its metabolism, and elevate tyrosin hydroxylase protein levels and activity. Elevated MPTP-reduced dopaminergic and transferrin receptor cell count in the SNpc.		

REFERENCES

- [1]. Gal S, et al. M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson's disease. J Neural Transm Suppl. 2006;(70):447-456.
- [2]. Zheng H, et al. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem. 2005;95(1):68-78.
- [3]. Gal S, et al. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem. 2005;95(1):79-88.
- [4]. Gal S, et al. Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res. 2010;17(1):15-27.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA