Product Data Sheet

Lesogaberan hydrochloride

Cat. No.:HY-10061BCAS No.:2925644-17-1Molecular Formula: $C_3H_{10}ClFNO_2P$

Molecular Weight: 177.54

Target: GABA Receptor

Della de la Companya de la Companya

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: 4°C, stored under nitrogen

* In solvent: -80°C, 6 months; -20°C, 1 month (stored under nitrogen)

SOLVENT & SOLUBILITY

In Vitro DMSO : 240 mg/mL (1351.81 mM; Need ultrasonic)

H₂O: 100 mg/mL (563.25 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	5.6325 mL	28.1627 mL	56.3253 mL
	5 mM	1.1265 mL	5.6325 mL	11.2651 mL
	10 mM	0.5633 mL	2.8163 mL	5.6325 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 100 mg/mL (563.25 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 6 mg/mL (33.80 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 6 mg/mL (33.80 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 6 mg/mL (33.80 mM); Clear solution

BIOLOGICAL ACTIVITY

measured by displacement of $[^3H]$ GABA binding in brain membranes: 5.1 nM and 1.4 μ M, respectively. Lesogaberan hydrochloride inhibits transient lower esophageal sphincter relaxation through a peripheral mode of action $[^1]$.

IC so & Target Ki: 5.1 ± 1.2 nM (rat GABA_B), 1.4 ± 0.3 μ M (rat GABA_A)^[1]

EC50: 8.6±0.77 nM (human GABA_B receptor)^[1]

In Vitro

Lesogaberan hydrochloride (3-30 nM) enhances human islet cell proliferation in vitro^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[2]

Cell Line:	Human islet cells	
Concentration:	3, 10, and 30 nM	
Incubation Time:	4 days	
Result:	Had a small but nonsignificant promitotic effect at 3 nM, while treatment at higher dosages (10 and 30 nM) led to a 2-3-fold increase in proliferation relative to that of islets cultured in medium alone.	

In Vivo

Lesogaberan hydrochloride potently stimulates recombinant human GABA_B receptors and inhibits transient lower esophageal sphincter relaxation (TLESR) in dogs, with a biphasic dose-response $curve^{[1]}$.

Oral Lesogaberan (0.08 mg/mL; 48 hours) hydrochloride protects human islet β -cells from apoptosis in islet grafts in mice^[2]. Lesogaberan (7 μ mol/kg) hydrochloride shows high oral availability (88% in the dog and 100% in the rat) and relatively low systemic clearance in female SpragueDawley rats^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Diabetic NOD/scid mice were implanted with human islets $^{[2]}$
Dosage:	0.08 mg/mL
Administration:	48 hours
Result:	Significantly reduced the percentages of apoptotic islet cells and increased the frequency of insulin $^{+}$ β -cells in human islet grafts.

Animal Model:	Female Sprague Dawley rats ^[1]	
Dosage:	7 μmol/kg (Pharmacokinetic Analysis)	
Administration:	Oral	
Result:	High oral availability (88% in the dog and 100% in the rat) and relatively low systemic clearance. Plasma protein binding was 1% in rat and human plasma.	

REFERENCES

[1]. Lehmann A, et al. (R)-(3-amino-2-fluoropropyl) phosphinic acid (AZD3355), a novel GABAB receptor agonist, inhibits transient lower esophageal sphincter relaxation through a peripheral mode of action. J Pharmacol Exp Ther. 2009 Nov;331(2):504-12.

[2]. Tian J, et al. Repurposing Lesogaberan to Promote Human Islet Cell Survival and β-Cell Replication. J Diabetes Res. 2017;2017:6403539.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA