
Lazabemide

Cat. No.:	HY-14201		
CAS No.:	103878-84-8		
Molecular Formula:	C ₈ H ₁₀ ClN ₃ O		
Molecular Weight:	199.64		
Target:	Monoamine Oxidase		
Pathway:	Neuronal Signaling		
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	2 years
		-20°C	1 year

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
		1 mM	5.0090 mL	25.0451 mL	50.0902 mL	
		5 mM	1.0018 mL	5.0090 mL	10.0180 mL	
		10 mM	0.5009 mL	2.5045 mL	5.0090 mL	
	Please refer to the so	lubility information to select the app	propriate solvent.			
In Vivo	1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 0.5 mg/mL (2.50 mM); Clear solution					
	2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 0.5 mg/mL (2.50 mM); Clear solution					
	3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.5 mg/mL (2.50 mM); Clear solution					

BIOLOGICAL ACTIVITY				
Description	Lazabemide (Ro 19-6327) is a selective, reversible inhibitor of monoamine oxidase B (MAO-B) (IC ₅₀ =0.03 μM) but less active for MAO-A (IC ₅₀ >100 μM). Lazabemide inhibits monoamine uptake at high concentrations, the IC ₅₀ values are 86 μM, 123 μM and >500 μM for noradrenalin, serotonin and dopamine uptake, respectively. Lazabemide can be used for the research of parkinson and alzheimer's disease ^[1] .			
IC ₅₀ & Target	IC50: 30 nM (MAO-B) ^[1] .			

In Vitro	The in vitro binding characteristics of both radiolabeled inhibitors revealed them to be selective, high-affinity ligands for the respective enzymes. K _D and B _{max} values for ³ H-Ro 19-6327 in rat cerebral cortex are 18.4 nM and 3.45 pmol/mg protein, respectively ^[1] . The IC ₅₀ values for lazabemide are: 86 μM for NA uptake; 123 μM for 5HT uptake; > 500 μM for DA uptake, respectively ^[1] . . Lazabemide (5 μM) inhibits human MAO-B and MAO-A with IC ₅₀ of 6.9 nM and >10 nM, respectively. And it inhibits rat MAO-B and MAO-A with IC ₅₀ of 3.7 nM and >10 μM, respectively ina enzymatic assay ^[2] . Lazabemide differs from L-deprenyl in their ability to induce release of endogenous monoamines from synaptosomes. Thus, Lazabemide (500 μM) induces a greater 5 HT release than does L-deprenyl, but is less effective than L-deprenyl in releasing DA. On the contrary, lazabemide was almost completely inactive on either 5-HT and DA release ^[2] . Lazabemide (250 nM) results in a clear inhibition of DOPAC formation, while does not increase the accumulation of newly-formed DA in those tubular epithelial cells loaded with 50 microM L-DOPA ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Lazabemide (3 mg/kg) attenuates ichemia reperfusion-induced hydroxyl radical generation and pretreatment with Lazabemide showed decreased DOPAC levels in comparison with those of their respective vehicle-treated control groups ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Saura J, et al. Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci. 1992 May;12(5):1977-99.

[2]. Bondiolotti GP, et al. In vitro effects on monoamine uptake and release by the reversible monoamine oxidase-B inhibitors lazabemide and N-(2-aminoethyl)-p-chlorobenzamide: a comparison with L-deprenyl. Biochem Pharmacol. 1995 Jun 29;50(1):97-102.

[3]. Guimaraes J, et al. The activity of MAO A and B in rat renal cells and tubules. Life Sci. 1998;62(8):727-37.

[4]. Suzuki T, et al. MAO inhibitors, clorgyline and lazabemide, prevent hydroxyl radical generation caused by brain ischemia/reperfusion in mice. Pharmacology. 1995 Jun;50(6):357-62.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA