Product Data Sheet

Lanicemine dihydrochloride

Cat. No.: HY-108235A CAS No.: 153322-06-6 Molecular Formula: $C_{13}H_{16}Cl_2N_2$ Molecular Weight: 271.19 Target: iGluR

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro DMSO: 240 mg/mL (884.99 mM; Need ultrasonic)

 $H_2O : \ge 100 \text{ mg/mL} (368.75 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.6875 mL	18.4373 mL	36.8745 mL
	5 mM	0.7375 mL	3.6875 mL	7.3749 mL
	10 mM	0.3687 mL	1.8437 mL	3.6875 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 100 mg/mL (368.75 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 6 mg/mL (22.12 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 6 mg/mL (22.12 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 6 mg/mL (22.12 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Lanicemine (AZD6765) dihydrochloride is a low-trapping NMDA channel blocker (K_i of 0.56-2.1 μM for NMDA receptor; IC₅₀s of 4-7 μM and 6.4 μM in CHO and Xenopus oocyte cells, respectively). Antidepressant effects^[1].

IC₅₀ & Target NMDA receptor^[1]

In Vivo

Lanicemine produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects^[1]. Lanicemine (3, 10 or 30 mg/kg; intraperitoneal) not only engages brain circuits involved in the generation of gamma- electroencephalography (EEG), but also influences these networks independent of the broader systems-level disruptions typical of ketamine^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Sprague-Dawley rats ^[1]	
Dosage:	3, 10 or 30 mg/kg	
Administration:	Intraperitoneal	
Result:	Produced pronounced dose-dependent elevations in spontaneous gamma-band EEG, but only gamma changes for Ketamine were tightly coupled to increases in locomotor activity.	

REFERENCES

[1]. Sanacora G, et al. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacywith minimal psychotomimetic adverse effects. Mol Psychiatry. 2014 Sep;19(9):978-85.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA