Laduviglusib monohydrochloride

MedChemExpress

Cat. No.: CAS No.: Molecular Formula:	HY-10182A 1797989-42-4	
Molecular Formula: Molecular Weight: Target:	C ₂₂ H ₁₉ Cl ₃ N ₈ 501.8 GSK-3; Autophagy; Wnt; β-catenin; Organoid	N N N
Pathway:	PI3K/Akt/mTOR; Stem Cell/Wnt; Autophagy	N
Storage:	4°C, sealed storage, away from moisture * In solvent : -80°C, 2 years; -20°C, 1 year (sealed storage, away from moisture)	

H-CI

Product Data Sheet

0
2
S
S
Y '
0
_
D)
Scree
-
≓.
=.
mo l
ening
_
ibraries
0
-
- Ci
9
⊐.
D .
(A)
Τ
_
0
¥
oteins
Ξ.
_
(A)

Inhibit

SOLVENT & SOLUBILITY

H ₂ O : 7	e , (DMSO : 60 mg/mL (119.57 mM; Need ultrasonic) H ₂ O : 7.14 mg/mL (14.23 mM; Need ultrasonic)					
		Solvent Mass Concentration	1 mg	5 mg	10 mg		
	Preparing Stock Solutions	1 mM	1.9928 mL	9.9641 mL	19.9283 mL		
		5 mM	0.3986 mL	1.9928 mL	3.9857 mL		
		10 mM	0.1993 mL	0.9964 mL	1.9928 mL		
	Please refer to the so	lubility information to select the app	propriate solvent.				
In Vivo		1. Add each solvent one by one: PBS Solubility: 5 mg/mL (9.96 mM); Clear solution; Need ultrasonic					
		2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 3 mg/mL (5.98 mM); Clear solution					
		3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 3 mg/mL (5.98 mM); Clear solution					
		one by one: 10% DMSO >> 90% cor ′mL (5.98 mM); Clear solution	n oil				

BIOLOGICAL ACTIVITY Description Laduviglusib (CHIR-99021) monohydrochloride is a potent and selective GSK-3α/β inhibitor with IC₅₀s of 10 nM and 6.7 nM. Laduviglusib monohydrochloride shows >500-fold selectivity for GSK-3 over CDC2, ERK2 and other protein kinases. Laduviglusib monohydrochloride is also a potent Wnt/β-catenin signaling pathway activator. Laduviglusib monohydrochloride enhances mouse and human embryonic stem cells self-renewal. Laduviglusib monohydrochloride induces autophagy^{[1][2][3]}.

IC ₅₀ & Target	GSK-3β 6.7 nM (IC ₅₀)	GSK-3α 10 nM (IC ₅₀)	cdc2 8800 nM (IC ₅₀)
In Vitro	Laduviglusib monohydrochloride inhibits human GSK-3 β with K _i values of 9.8 nM ^[1] . Laduviglusib monohydrochloride is a small organic molecule that inhibits GSK3 α and GSK3 β by competing for their ATP-binding sites. In vitro kinase assays reveal that Laduviglusib monohydrochloride specifically inhibits GSK3 β (IC ₅₀ =~5 nM) and GSK3 α (IC ₅₀ =~10 nM), with little effect on other kinases ^[4] . In the presence of Laduviglusib monohydrochloride the viability of the ES-D3 cells is reduced by 24.7% at 2.5 μ M, 56.3% at 5 μ M, 61.9% at 7.5 μ M and 69.2% at 10 μ M Laduviglusib monohydrochloride with an IC ₅₀ of 4.9 μ M ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	In ZDF rats, a single oral dose of Laduviglusib (16 mg/kg or 48 mg/kg) monohydrochloride rapidly lowers plasma glucose, with a maximal reduction of nearly 150 mg/dl 3-4 h after administration ^[1] . Laduviglusib (2 mg/kg) monohydrochloride given once, 4 h before irradiation, significantly improves survival after 14.5 Gy abdominal irradiation (ABI). Laduviglusib monohydrochloride treatment significantly blocks crypt apoptosis and accumulation of p-H2AX ⁺ cells, and improves crypt regeneration and villus height. Laduviglusib monohydrochloride treatment increases Lgr5 ⁺ cell survival by blocking apoptosis, and effectively prevents the reduction of Olfm4, Lgr5 and CD44 as early as 4 h ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		

PROTOCOL	
Cell Assay ^[3]	The viability of the mouse ES cells is determined after exposure to different concentrations of GSK3 inhibitors for three days using the MTT assay. The decrease of MTT activity is a reliable metabolism-based test for quantifying cell viability; this decrease correlates with the loss of cell viability. 2,000 cells are seeded overnight on gelatine-coated 96-well plates in LIF-containing ES cell medium. On the next day the medium is changed to medium devoid of LIF and with reduced serum and supplemented with 0.1-1 µM BIO, or 1-10 µM SB-216763, CHIR-99021 or CHIR-98014. Basal medium without GSK3 inhibitors or DMSO is used as control. All tested conditions are analyzed in triplicates ^[3] .
Animal Administration ^{[1][4]}	Rats ^[1] Primary hepatocytes from male Sprague Dawley rats that weighed <140 g are prepared and used 1-3 h after isolation. Aliquots of 1×10 ⁶ cells in 1 mL of DMEM/F12 medium plus 0.2% BSA and CHIR-99021(orally at 16 or 48 mg/kg) or controls are incubated in 12-well plates on a low-speed shaker for 30 min at 37°C in a CO ₂ -enriched atmosphere, collected by centrifugation and lysed by freeze/thaw in buffer A plus 0.01% NP40; the GS assay is again performed. Mice ^[4] Mice 6-10 weeks old are used. The PUMA ^{+/+} and PUMA ^{-/-} littermates on C57BL/6 background (F10) and Lgr5-EGFP (Lgr5- EGFP-IRES-creERT2) mice are subjected to whole body irradiation (TBI), or abdominal irradiation (ABI). Mice are injected intraperitoneally (i.p.) with 2 mg/kg of CHIR99021 4 h before radiation or 1 mg/kg of SB415286 28 h and 4 h before radiation. Mice are sacrificed to collect small intestines for histology analysis and western blotting. All mice are injected i.p. with 100 mg/kg of BrdU before sacrifice. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nat Med. 2016 May;22(5):547-56.
- Cell Discov. 2023 Jun 6;9(1):53.
- Nat Genet. 2024 Jan 24.
- Cell Stem Cell. 2022 Sep 1;29(9):1366-1381.e9.
- Cell Stem Cell. 2022 Jul 7;29(7):1102-1118.e8.

REFERENCES

[1]. Ring DB, et al. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes. 2003 Mar;52(3):588-95.

[2]. Bennett CN, et al. Regulation of Wnt signaling during adipogenesis. J Biol Chem. 2002 Aug 23;277(34):30998-1004.

[3]. Naujok O, et al. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes. 2014 Apr 29;7:273.

[4]. Wang X, et al. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Sci Rep. 2015 Apr 10;5:8566.

[5]. Ye S, et al. Pleiotropy of glycogen synthase kinase-3 inhibition by CHIR99021 promotes self-renewal of embryonic stem cells from refractory mouse strains. PLoS One. 2012;7(4):e35892.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA