Product Data Sheet

LY-311727

Cat. No.: HY-107393 CAS No.: 164083-84-5

Molecular Formula: $C_{22}H_{27}N_2O_5P$ Molecular Weight: 430.43

Target: Phosph

Pathway: Metabo

Storage: Powder

> 2 years In solvent -80°C 6 months

-20°C 1 month

holip	ase				HO	~	~		N.	
olic E	Enzyme/P	rotease						~		
er	-20°C	3 vears								

BIOLOGICAL ACTIVITY

Description	· ·	LY-311727 is a potent secretory non-pancreatic phospholipase A_2 (sPLA ₂) inhibitor (IC ₅₀ <1 μ M for group IIA sPLA ₂). sPLA ₂ is an important proinflammatory enzyme ^{[1][2]} .			
IC ₅₀ & Target	sPLA ₂ ^[1]				
In Vitro	(hnps-PLA ₂), in a conce LY-311727 nearly aboli concentration respons LY-311727 displays 1,5	LY-311727 (0.1-10 μ M) suppresses the contractile responses induced by human non-pancreatic secretory phospholipase A ₂ (hnps-PLA ₂), in a concentration related manner ^[1] . LY-311727 nearly abolishes the hnps-PLA ₂ responses at 1 μ M, while it failed to suppress porcine pancreatic PLA ₂ concentration response curves at the same concentration ^[1] . LY-311727 displays 1,500-fold selectivity when assayed against porcine pancreatic s-PLA ₂ ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
In Vivo	LY-311727 (3-30 mg/kg; i.v.) dramatically suppresses the circulating enzyme activity in mice with metallothionein promoter-human secretory PLA ₂ minigene (Mt-sPLA ₂) transgenic the intravenous (i.v.) administration ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
	Animal Model:	C57BL/6J mice, Mt-sPLA ₂ transgenic mice model ^[2]			
	Dosage:	3 mg/kg, 10 mg/kg, 30 mg/kg			
	Administration:	Intravenous injection			
	Result:	Significantly and dose dependently suppressed the PLA ₂ activity in the serum.			

REFERENCES

[1]. R W Schevitz, et al. Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2. Nat Struct Biol. 1995 Jun;2(6):458-65.

[2]. N Fox, et al. Transgenic model for the discovery of novel human secretory non-pancreatic phospholipase A2 inhibitors. Eur J Pharmacol. 1996 Jul 18;308(2):195-203.

ne functions of five distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type I ant and act in concert with cytosolic phospholipase A2. J Biol Che	Ia and type V secretory phospholipase A2\$
Caution: Product has not been fully validated for medical applications. For research	use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExp	ress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA	

Page 2 of 2 www.MedChemExpress.com