Proteins

LG101506

Cat. No.: HY-108524 CAS No.: 331248-11-4 Molecular Formula: $C_{25}H_{34}F_{2}O_{3}$ Molecular Weight: 420.53

RAR/RXR Target: Pathway: Metabolic Enzyme/Protease; Vitamin D Related/Nuclear Receptor

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description LG101506 is a selective and orally active RXR modulator with a Ki of 2.7 nM for RXRa. LG101506 can be used for the research of type 2 diabetes and cancer^{[1][2]}.

IC₅₀ & Target

Ki: $2.7 \text{ nM} (RXR\alpha)^{[1]}$

In Vitro

LG101506 synergizes with BRL 49653 (HY-17386) to enhance activation at the RXR/PPARγ heterodimer with an EC₅₀ of 3.1 nM

LG101506 (15.6-1000 nM) blocks the production of NO in a dose-dependent manner in RAW264.7 stimulated with LPS (HY-D1056) for 24 hours^[2].

LG101506 (100-1000 nM; 24 h) inhibits inflammatory pathways induced by LPS (HY-D1056) or TNF α in RAW264.7 cells^[2]. LG101506 (30 and 100 nM; 1-24 h) induces differentiation in U937 leukemia cells^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[2]

Cell Line:	RAW264.7 cells
Concentration:	100, 300 and 1000 nM
Incubation Time:	24 h
Result:	Markedly reduced protein levels of COX-2. Pretreatment prevented the degradation of IkB α in RAW cells stimulated with TNF α . Enhanced Erk phosphorylation, which peaked at 8 hours.

Western Blot Analysis^[2]

Cell Line:	U937 leukemia cells
Concentration:	30 and 100 nM
Incubation Time:	1, 2, 8 and 24 h
Result:	Enhanced phosphorylation of Akt in U937 cells within 1 hour, which increased further at 8 hours.

Animal Model:	A/J mice, lung carcinogenesis model ^[2]						
Dosage:	40 mg/kg diet or approximately 10 mg/kg body weight						
Administration:	Oral, for 16 weeks						
Result:	Reduced the number of lung tumors, the average tumor burden, the size and histopathology of lung tumors.						
Animal Model:	Male ICR mice $^{[1]}$						
Dosage:	30 mg/kg						
Administration:	Oral (Pharmacokinetic Analysis)						
Result:	In vivo evaluation of oral exposure of LG101506 ^[1]						
	Compd	Dose (mg/kg)	Oral AUC _(0-6 h) (μ g•h/mL)	T _{max} (h)	C _{max} (μg•h/mL)		
	LG101506	30	2.09±0.45	1	1.2±0.28		

REFERENCES

In Vivo

[1]. Gernert DL, et al. Design and synthesis of fluorinated RXR modulators. Bioorg Med Chem Lett. 2003 Oct 6;13(19):3191-5.

[2]. Cao M, et al. The Rexinoids LG100268 and LG101506 Inhibit Inflammation and Suppress Lung Carcinogenesis in A/J Mice. Cancer Prev Res (Phila). 2016 Jan;9(1):105-14.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA