Screening Libraries

Product Data Sheet

LDN-192960

Cat. No.: HY-13455 CAS No.: 184582-62-5 Molecular Formula: $C_{18}H_{20}N_2O_2S$ Molecular Weight: 328.43

Target: Haspin Kinase; DYRK

Pathway: Cell Cycle/DNA Damage; Protein Tyrosine Kinase/RTK

Storage: Powder -20°C 3 years

> 4°C 2 years -80°C 6 months

In solvent

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (76.12 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0448 mL	15.2239 mL	30.4479 mL
	5 mM	0.6090 mL	3.0448 mL	6.0896 mL
	10 mM	0.3045 mL	1.5224 mL	3.0448 mL

Please refer to the solubility information to select the appropriate solvent.

\mathbf{D}	ו אכו	~ 1	ACTI	MTM
BIU		U.AI	ACTI'	VIIY

Description	LDN-192960 is an inhibitor of Haspin and Dual-specificity Tyrosine-regulated Kinase 2 (DYRK2) with IC $_{50}$ s of 10 nM and 48 nM, respectively ^[1] .
IC ₅₀ & Target	IC50: 10 nM (Haspin); 48 nM (DYRK2) ^[1]
In Vitro	LDN-192960 (10 μ M) is selective and inhibits ten of the other kinases by \geq 90%, with only five being potently inhibited (IC ₅₀ <1 μ M), including CLK1 (IC ₅₀ =0.21 μ M), DYRK1A (IC ₅₀ =0.10 μ M), DYRK2 (IC ₅₀ =2 nM), DYRK3 (IC ₅₀ =19 nM) and PIM1 (IC ₅₀ =0.72 μ M) [1]. LDN-0192960 (0-5 μ M; 2 hours) demonstrates that the classical Haspin inhibition phenotype by reducing levels of p-Thr3H3 in HeLa cells overexpressing Haspin with an EC ₅₀ of 1.17 μ M ^[2] . LDN-0192960 (0-1 μ M; 1 hour incubation in the presence of nocodazole and MG132) demonstrates the classical Haspin inhibition phenotype by reducing levels of p-Thr3H3 in HeLa cells synchronized in mitosis with an EC ₅₀ of 0.02 μ M ^[2] .

			YRK2 kinase inhibitors. Bioorg Med Ch urr Med Chem. 2017;24(21):2276-2293.	
Katrin Kestav, et al. Structure,	Roles and Inhibitors of a M	itotic Protein Kinase Haspin. Cr	urr Med Chem. 2017;24(21):2276-2293.	
			edical applications. For research	
Т	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExp	ress.com
	Address: 1 [Deer Park Dr, Suite Q, Monm	outh Junction, NJ 08852, USA	

Page 2 of 2 www.MedChemExpress.com