L-Ascorbic acid 2-phosphate

Cat. No.:	HY-103701	
CAS No.:	23313-12-4	
Molecular Formula:	C _e H ₉ O ₉ P	° Ó
Molecular Weight:	256.1	Q-R-OH
Target:	Phosphatase; Reactive Oxygen Species; Endogenous Metabolite	но
Pathway:	Metabolic Enzyme/Protease; Immunology/Inflammation; NF-кВ	он он
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

Product Data Sheet

BIOLOGICAL ACTIVITY Description L-ascorbic acid 2-phosphate (2-Phospho-L-ascorbic acid) is a long-acting vitamin C derivative that can stimulate collagen formation and expression^[1]. L-ascorbic acid 2-phosphate (2-Phospho-L-ascorbic acid) can be used as a culture medium supplement for the osteogenic differentiation of human adipose stem cells (hASCs). L-ascorbic acid 2-phosphate increases alkaline phosphatase (ALP) activity and expression of runx2A in hASCs during the osteogenic differentiation^{[2][3]}. IC₅₀ & Target Human Endogenous Metabolite In Vitro L-Ascorbic acid 2-phosphate (0.1-1.5 mM; 2 to 3 weeks with medium exchange every 2 to 3 days) significantly stimulates cell growth, whereas addition of I-Ascorbic acid (Asc) achieves only weak growth stimulation. A combination of Asc-2P and bFGF significantly increases cell growth, but supplementation with EGF and/or insulin does not have any additional effect ^[1]. L-Ascorbic acid 2-phosphate (50 µM-250 µM) is needed for the effective osteogenic differentiation of human adipose stem cells (hASCs), and higher concentrations of AsA2-P results in increased runx2 expression and ALP activity. The highest proliferation, ALP activity and runx2 expression is achieved with 150 µM AsA2-P and 10 nM dexamethasone (Dex), and 250 µM AsA2-P and 5 nM Dex^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Proliferation Assay^[1] Cell Line: Human corneal endothelial cells (HCECs) Concentration: 0.1 mM; 0.3 mM; 1.5 mM Incubation Time: 2 to 3 weeks with medium exchange every 2 to 3 days Result: Stimulated HCEC cells growth.

CUSTOMER VALIDATION

• Autophagy. 2022 Jul 4.

See more customer validations on <u>www.MedChemExpress.com</u>

REFERENCES

[1]. Shima N, et al. Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with L-ascorbic acid 2-phosphate.Invest Ophthalmol Vis Sci. 2011 Nov 7;52(12):8711-7.

[2]. Kurata S, et al. Epidermal growth factor inhibits transcription of type I collagen genes and production of type I collagen in cultured human skin fibroblasts in the presence and absence of L-ascorbic acid 2-phosphate, a long-acting vitamin C derivative. J Biol Chem. 1991 May 25;266(15):9997-10003.

[3]. Kyllönen L, et al. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro. Stem Cell Res Ther. 2013 Feb 15;4(1):17.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA