Proteins

Product Data Sheet

Kenpaullone

Cat. No.: HY-12302 CAS No.: 142273-20-9 Molecular Formula: C₁₆H₁₁BrN₂O Molecular Weight: 327.18 Target: CDK; GSK-3

Pathway: Cell Cycle/DNA Damage; PI3K/Akt/mTOR; Stem Cell/Wnt

Storage: Powder -20°C 3 years

In solvent

2 years -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

DMSO: $\geq 35 \text{ mg/mL} (106.97 \text{ mM})$ In Vitro

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0564 mL	15.2821 mL	30.5642 mL
	5 mM	0.6113 mL	3.0564 mL	6.1128 mL
	10 mM	0.3056 mL	1.5282 mL	3.0564 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.64 mM); Suspended solution

BIOLOGICAL ACTIVITY

Description

A, CDK2/cyclin E, and CDK5/p25 with IC₅₀s of 0.68 μM, 7.5 μM, 0.85 μM, respectively. Kenpaullone, a small molecule inhibitor

of KLF4, reduces self-renewal of breast cancer stem cells and cell motility in vitro.

IC₅₀ & Target Cdk1/cyclin B cdk2/cyclin A CDK5/p35 CDK2/cyclinE $0.4~\mu M~(IC_{50})$ $0.68~\mu M~(IC_{50})$ $0.85~\mu M~(IC_{50})$ $7.5~\mu\text{M}~(\text{IC}_{50})$

> GSK-3β erk1 erk2 c-raf 0.023 μM (IC₅₀) $20 \mu M (IC_{50})$ 9 μM (IC₅₀) 38 μM (IC₅₀)

In Vitro $Ken paul lone shows much less \ effect on \ c-src \ (IC_{50}, 15 \ \mu M), \ case in \ kinase \ 2 \ (IC_{50}, 20 \ \mu M), \ erk \ 1 \ (IC_{50}, 20 \ \mu M), \ and \ erk \ 2 \ (IC_{50}, 90 \ \mu M), \ erk \ 1 \ (IC_{50}, 10 \ \mu M), \ erk \ 2 \ (IC_{50}, 10 \ \mu M), \ erk \ 1 \ (IC_{50}, 10 \ \mu M), \ erk \ 2 \ (IC_{50}, 10 \ \mu M), \ erk$ μ M). Kenpaullone acts by competitive inhibition of ATP binding, and the apparent K_i is 2.5 μ M. Kenpaullone can inhibit the growth of tumor cells in culture (mean GI $_{50}$, 43 μ M) and causes altered cell cycle progression most clearly revealed under conditions of recovery from serum starvation^[1]. Kenpaullone demonstrates a wide range of biological utility, extending from maintenance of pancreatic β cell survival and proliferation to the induction of apoptosis in cancer cells^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

The kinase assay is run for 10 min at 30°C with 1 mg/mL histone H1, in the presence of 15 μ M [g- 32 P]ATP (3000 Ci/ μ mol; 1 mCi/mL) in a final volume of 30 ml. Purification and assays or inhibition of other kinases are performed. In kinetic experiments, the histone H1 concentration is lowered to 3.5 mg/mL; the ATP concentration ranged from 50 to 400 μ M, and the kenpaullone concentration ranges from 1 to 4 μ M.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Mil Med Res. 2020 Nov 1;7(1):52.
- Mil Med Res. 2020 Sep 6;7(1):42.
- Sci Adv. 2021 Apr 14;7(16):eabb2213.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Zaharevitz DW, et al. Discovery and initial characterization of the paullones, a novel class of small-molecule inhibitors of cyclin-dependent kinases. Cancer Res. 1999 Jun 1;59(11):2566-9.

[2]. Lyssiotis CA, et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci U S A. 2009 Jun 2:106(22):8912-7.

[3]. FYu, et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene. 2011 May 5;30(18):2161-72.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA