KG-548

Cat. No.: HY-120087 CAS No.: 175205-09-1 Molecular Formula: $C_0H_4F_6N_4$ Molecular Weight: 282.15

Target: HIF/HIF Prolyl-Hydroxylase Pathway: Metabolic Enzyme/Protease -20°C Storage: Powder 3 years

4°C 2 years -80°C In solvent 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (354.42 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.5442 mL	17.7211 mL	35.4421 mL
	5 mM	0.7088 mL	3.5442 mL	7.0884 mL
	10 mM	0.3544 mL	1.7721 mL	3.5442 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description KG-548 is an ARNT/TACC3 disruptor and a HIF-1α inhibitor. KG-548 directly interferes with ARNT/TACC3 complex formation by competing with TACC3 for binding to the ARNT PAS-B domain. ARNT is the aryl hydrocarbon receptor nuclear

translocator, also known as HIF- $\beta^{[1][2]}$.

 $\mathsf{HIF}\text{-}\beta^{[1]}; \mathsf{HIF}\text{-}1\alpha^{[2]}$ IC₅₀ & Target

In Vitro HIF is a heterodimer of two bHLH-PAS (basic Helix Loop Helix-Per-ARNT-Sim) subunits, including a HIF-α paralog (HIF-1α, -

 2α , -3α) and aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF- β)[1].

KG-548 (0-250 μ M; 16 h for over night) exhibits the great reduction of ARNT/CCC complex formation for both coactivators, and also disrupts ARNT2 PAS-B/TACC3 interactions^[1].

KG-548 (0-2 mM; 16 h for over night) dose-dependently breaks up the (320 μM) ARNT PAS-B/TACC3 complex in vitro and in cell lysate with an IC₅₀ value of 25 μ M^[1].

KG-548 significantly inhibits lactate production of glycolysis in FaDu hypopharyngeal carcinoma cells^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	HEK293T cell lysates		
Concentration:	0, 5, 50, 100, 250, 500 μM and 1 mM, 2 mM		
Incubation Time:	16 hours		
Result:	Weakened the ARNT/TACC3 interaction from 5 μM to 500 μM dose-dependently, and decreased the protein intense of ARNT associated with immunoprecipitated TACC3 protein by 82% (500 μM), 59% (1 mM), 43% (2 mM), respectively.		

REFERENCES

- [1]. Guo Y, et al. Regulating the ARNT/TACC3 axis: multiple approaches to manipulating protein/protein interactions with small molecules. ACS Chem Biol. 2013 Mar 15;8(3):626-35.
- [2]. Kleszcz R, et al. The inhibition of c-MYC transcription factor modulates the expression of glycolytic and glutaminolytic enzymes in FaDu hypopharyngeal carcinoma cells. Adv Clin Exp Med. 2018 Jun;27(6):735-742.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA