

K02288

Cat. No.: HY-12278 CAS No.: 1431985-92-0 Molecular Formula: $C_{20}H_{20}N_{2}O_{4}$ Molecular Weight: 352.38

Target: TGF-β Receptor Pathway: TGF-beta/Smad

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

> -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 58.6 \text{ mg/mL} (166.30 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.8378 mL	14.1892 mL	28.3785 mL
	5 mM	0.5676 mL	2.8378 mL	5.6757 mL
	10 mM	0.2838 mL	1.4189 mL	2.8378 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.09 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.09 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.09 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	K02288 is a potent bone morphogenetic protein (BMP) type I receptor inhibitor with IC $_{50}$ s of 1.8, 1.1, 6.4 nM for ALK1, ALK2 and ALK6, respectively. K02288 shows slightly weaker inhibition against ALK3 and ALK6 with IC $_{50}$ s of of 5-34 nM.
IC ₅₀ & Target	$IC50 \boxtimes 1.8 \; nM \; (ALK1), 1.1 \; nM \; (ALK2), 34.4 \; nM \; (ALK3), 6.3 \; nM \; (ALK6), 302 \; nM \; (ALK4), 321 \; nM \; (ALK5)^{[1]}$
In Vitro	K02288 reduces a robust phosphorylation of Smad1/5/8 induced by BMP4 stimulation, with an apparent IC $_{50}$ of 100 nM.

	K02288 causes near complete inhibition of Smad2 phosphorylation at 0.5 μ M ^[1] . K02288 binds to ALK1 in an ATP-mimetic fashion with two hydrogen bonds to the kinase hinge. K02288 also inhibits BMP9-ALK1 signalling, and induces a hypersprouting phenotype in HUVECs ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	K02288 (1 μ M) induces dysfunctional angiogenesis in a chick embryo CAM model ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Exp Mol Med. 2022 Oct 12.
- Bioorg Med Chem Lett. 2020 Dec 1;30(23):127608.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Sanvitale CE, et al. A new class of small molecule inhibitor of BMP signaling. PLoS One. 2013 Apr 30;8(4):e62721.

[2]. Kerr G, et al. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis. Angiogenesis. 2015 Apr;18(2):209-17.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA