Product Data Sheet

JNJ-47965567

Cat. No.: HY-101418 CAS No.: 1428327-31-4 Molecular Formula: $C_{28}H_{32}N_4O_2S$ Molecular Weight: 488.64 Target: P2X Receptor

Pathway: Membrane Transporter/Ion Channel

-20°C Storage: Powder

3 years 2 years

-80°C In solvent 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (204.65 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0465 mL	10.2325 mL	20.4650 mL
	5 mM	0.4093 mL	2.0465 mL	4.0930 mL
	10 mM	0.2046 mL	1.0232 mL	2.0465 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.12 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.12 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.12 mM); Clear solution

BIOLOGICAL ACTIVITY

Description JNJ-47965567 is a centrally permeable, high-affinity, selective P2X7 antagonist, with pKis of 7.9 and 8.7 for human and rat P2X7, respectively. JNJ-47965567 can be used to probe the role of central P2X7 in rodent models of CNS pathophysiology^[1]. pKi: 7.9 (huaman P2X7), 8.7 (rat P2X7)^[1] IC₅₀ & Target

JNJ-47965567 exhibits high affinity for human and rat P2X7 in membrane preparations of 1321N1 cells^[1]. In Vitro

JNJ-47965567 does not block IL-6 and TNF- α release, under identical conditions (LPS and BZ-ATP) used for IL-1 β and IL-18

release^[1].

JNJ-47965567 attenuates IL-1 β release with pIC₅₀s of 6.7 \pm 0.07 (human blood), 7.5 \pm 0.07 (human monocytes) and 7.1 \pm 0.1 (rat microglia), respectively, in native systems^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

JNJ-47965567 (30-100 mg/kg; s.c.) attenuates IL-1 β release induced by Bz-ATP^[1].

JNJ-47965567 (30 mg/kg) attenuates amphetamine-induced hyperactivity and exhibits modest, yet significant efficacy in the rat model of neuropathic pain [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Sprague Dawley $rats^{[1]}$	
Dosage:	30 mg/kg, 100 mg/kg	
Administration:	Subcutaneous injection; 30 minutes prior to Bz-ATP infusion	
Result:	Significantly attenuated IL-1 β release at 100 mg/kg, with no effect at 30 mg/kg dose group.	

CUSTOMER VALIDATION

- FASEB J. 2023 Jun;37(6):e22955.
- J Neurochem. 2022 Oct 21.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Bhattacharya A, et al. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol. 2013 Oct;170(3):624-40

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA