

Product Data Sheet

JKE-1674

Cat. No.: HY-138153

CAS No.: 2421119-60-8

Molecular Formula: $C_{20}H_{20}Cl_2N_4O_4$ Molecular Weight: 451.3

Target: Ferroptosis; Glutathione Peroxidase

Pathway: Apoptosis; Metabolic Enzyme/Protease

Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro DMSO: 100 mg/mL (221.58 mM; Need ultrasonic)

Ethanol: ≥ 50 mg/mL (110.79 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2158 mL	11.0791 mL	22.1582 mL
	5 mM	0.4432 mL	2.2158 mL	4.4316 mL
	10 mM	0.2216 mL	1.1079 mL	2.2158 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- Add each solvent one by one: 10% EtOH >> 90% PEG400
 Solubility: 5 mg/mL (11.08 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.54 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.54 mM); Clear solution

BIOLOGICAL ACTIVITY

DescriptionJKE-1674 is an orally active glutathione peroxidase 4 (GPX4) inhibitor and an active metabolite of GPX4 inhibitor ML-210.

JKE-1674, an analog of ML-210 in which the nitroisoxazole ring is replaced with an α -nitroketoxime. JKE-1674 can convert into a nitrile oxide JKE-1777. JKE-1674 kills LOX-IMVI cells in a manner that is equipotent to ML-210 and is completely

rescued by ferroptosis inhibitors^{[1][2][3]}.

 ${\sf IC_{50}\,\&\,Target} \qquad \qquad {\sf GPX4}^{[1]}$

Page 1 of 2

In Vitro	same +434Da GPX4 add rescued by ferroptosis oxide electrophile that	JKE-1674 exhibits activity indistinguishable from that of ML210 in cellular target engagement assays including yielding the same +434Da GPX4 adduct in cells. JKE-1674 kills LOX-IMVI cells in a manner that is equipotent to ML210 and is completely rescued by ferroptosis inhibitors. JKE-1674 forms a nitrile-oxide electrophile in cells. JKE-1674 dehydration yields a nitrile-oxide electrophile that binds GPX4. JKE-1674 exhibits far greater stability than chloroacetamide inhibitors ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	. 0, 0, 1	JKE-1674 (50 mg/kg; p.o.) can be detected in the serum of mice dosed orally with the compound ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	SCID mice $^{[1]}$		
	Dosage:	50 mg/kg (Pharmacokinetic Analysis)		
	Administration:	P.o.		
	Result:	Could be detected in the serum of mice dosed orally with the compound.		

REFERENCES

- [1]. Eaton JK, et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol. 2020;16(5):497-506.
- [2]. Kathman SG, et al. A masked zinger to block GPX4. Nat Chem Biol. 2020;16(5):482-483.
- [3]. Viswanathan VS, et al. Unraveling Masked GPX4 Inhibitors. Nat. Chem. Biol. 2020, 16, 497–506.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA